Mathematical Feynman path integrals and their applications

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Mazzucchi, Sonia (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific Pub. Co. ©2009
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043126996
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2009 xx o|||| 00||| eng d
020 |a 9789812836908  |9 978-981-283-690-8 
020 |a 9789812836915  |c electronic bk.  |9 978-981-283-691-5 
020 |a 981283690X  |9 981-283-690-X 
020 |a 9812836918  |c electronic bk.  |9 981-283-691-8 
035 |a (OCoLC)613396809 
035 |a (DE-599)BVBBV043126996 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 515.43  |2 22 
100 1 |a Mazzucchi, Sonia  |e Verfasser  |4 aut 
245 1 0 |a Mathematical Feynman path integrals and their applications  |c Sonia Mazzucchi 
264 1 |a Singapore  |b World Scientific Pub. Co.  |c ©2009 
300 |a 1 Online-Ressource (viii, 216 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Includes bibliographical references (pages 197-213) and index 
500 |a 1. Introduction. 1.1. Wiener's and Feynman's integration. 1.2. The Feynman functional. 1.3. Infinite dimensional oscillatory integrals -- 2. Infinite dimensional oscillatory integrals. 2.1. Finite dimensional oscillatory integrals. 2.2. The Parseval type equality. 2.3. Generalized Fresnel integrals. 2.4. Infinite dimensional oscillatory integrals. 2.5. Polynomial phase functions -- 3. Feynman Path Integrals and the Schrödinger equation. 3.1. The anharmonic oscillator with a bounded anharmonic potential. 3.2. Time dependent potentials. 3.3. Phase space Feynman path integrals. 3.4. Magnetic field. 3.5. Quartic potential -- 4. The stationary phase method and the semiclassical limit of quantum mechanics. 4.1. Asymptotic expansions. 4.2. The stationary phase method. Finite dimensional case. 4.3. The stationary phase method. Infinite dimensional case. 4.4. The semiclassical limit of quantum mechanics. 4.5. The trace formula -- 5. Open quantum systems. 5.1. Feynman path integrals and open quantum systems. 5.2. The Feynman-Vernon influence functional. 5.3. The stochastic Schrödinger equation -- 6. Alternative approaches to Feynman path integration. 6.1. Analytic continuation of Wiener integrals. 6.2. The sequential approach. 6.3. White noise calculus. 6.4. Poisson processes. 6.5. Further approaches and results 
500 |a Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals 
650 7 |a MATHEMATICS / Calculus  |2 bisacsh 
650 7 |a MATHEMATICS / Mathematical Analysis  |2 bisacsh 
650 4 |a Feynman integrals 
650 0 7 |a Pfadintegral  |0 (DE-588)4173973-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Pfadintegral  |0 (DE-588)4173973-5  |D s 
689 0 |8 1\p  |5 DE-604 
710 2 |a World Scientific (Firm)  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028551187 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295463581417473
any_adam_object
author Mazzucchi, Sonia
author_facet Mazzucchi, Sonia
author_role aut
author_sort Mazzucchi, Sonia
author_variant s m sm
building Verbundindex
bvnumber BV043126996
collection ZDB-4-EBA
ctrlnum (OCoLC)613396809
(DE-599)BVBBV043126996
dewey-full 515.43
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.43
dewey-search 515.43
dewey-sort 3515.43
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04408nam a2200481zc 4500</leader><controlfield tag="001">BV043126996</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812836908</subfield><subfield code="9">978-981-283-690-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812836915</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-691-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981283690X</subfield><subfield code="9">981-283-690-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812836918</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-283-691-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)613396809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043126996</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.43</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mazzucchi, Sonia</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Feynman path integrals and their applications</subfield><subfield code="c">Sonia Mazzucchi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 216 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 197-213) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Wiener's and Feynman's integration. 1.2. The Feynman functional. 1.3. Infinite dimensional oscillatory integrals -- 2. Infinite dimensional oscillatory integrals. 2.1. Finite dimensional oscillatory integrals. 2.2. The Parseval type equality. 2.3. Generalized Fresnel integrals. 2.4. Infinite dimensional oscillatory integrals. 2.5. Polynomial phase functions -- 3. Feynman Path Integrals and the Schrödinger equation. 3.1. The anharmonic oscillator with a bounded anharmonic potential. 3.2. Time dependent potentials. 3.3. Phase space Feynman path integrals. 3.4. Magnetic field. 3.5. Quartic potential -- 4. The stationary phase method and the semiclassical limit of quantum mechanics. 4.1. Asymptotic expansions. 4.2. The stationary phase method. Finite dimensional case. 4.3. The stationary phase method. Infinite dimensional case. 4.4. The semiclassical limit of quantum mechanics. 4.5. The trace formula -- 5. Open quantum systems. 5.1. Feynman path integrals and open quantum systems. 5.2. The Feynman-Vernon influence functional. 5.3. The stochastic Schrödinger equation -- 6. Alternative approaches to Feynman path integration. 6.1. Analytic continuation of Wiener integrals. 6.2. The sequential approach. 6.3. White noise calculus. 6.4. Poisson processes. 6.5. Further approaches and results</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feynman integrals</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=305263</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028551187</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=305263</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=305263</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043126996
illustrated Not Illustrated
indexdate 2024-12-24T04:42:35Z
institution BVB
isbn 9789812836908
9789812836915
981283690X
9812836918
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028551187
oclc_num 613396809
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (viii, 216 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2009
publishDateSearch 2009
publishDateSort 2009
publisher World Scientific Pub. Co.
record_format marc
spelling Mazzucchi, Sonia Verfasser aut
Mathematical Feynman path integrals and their applications Sonia Mazzucchi
Singapore World Scientific Pub. Co. ©2009
1 Online-Ressource (viii, 216 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Includes bibliographical references (pages 197-213) and index
1. Introduction. 1.1. Wiener's and Feynman's integration. 1.2. The Feynman functional. 1.3. Infinite dimensional oscillatory integrals -- 2. Infinite dimensional oscillatory integrals. 2.1. Finite dimensional oscillatory integrals. 2.2. The Parseval type equality. 2.3. Generalized Fresnel integrals. 2.4. Infinite dimensional oscillatory integrals. 2.5. Polynomial phase functions -- 3. Feynman Path Integrals and the Schrödinger equation. 3.1. The anharmonic oscillator with a bounded anharmonic potential. 3.2. Time dependent potentials. 3.3. Phase space Feynman path integrals. 3.4. Magnetic field. 3.5. Quartic potential -- 4. The stationary phase method and the semiclassical limit of quantum mechanics. 4.1. Asymptotic expansions. 4.2. The stationary phase method. Finite dimensional case. 4.3. The stationary phase method. Infinite dimensional case. 4.4. The semiclassical limit of quantum mechanics. 4.5. The trace formula -- 5. Open quantum systems. 5.1. Feynman path integrals and open quantum systems. 5.2. The Feynman-Vernon influence functional. 5.3. The stochastic Schrödinger equation -- 6. Alternative approaches to Feynman path integration. 6.1. Analytic continuation of Wiener integrals. 6.2. The sequential approach. 6.3. White noise calculus. 6.4. Poisson processes. 6.5. Further approaches and results
Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals
MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
Feynman integrals
Pfadintegral (DE-588)4173973-5 gnd rswk-swf
Pfadintegral (DE-588)4173973-5 s
1\p DE-604
World Scientific (Firm) Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Mazzucchi, Sonia
Mathematical Feynman path integrals and their applications
MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
Feynman integrals
Pfadintegral (DE-588)4173973-5 gnd
subject_GND (DE-588)4173973-5
title Mathematical Feynman path integrals and their applications
title_auth Mathematical Feynman path integrals and their applications
title_exact_search Mathematical Feynman path integrals and their applications
title_full Mathematical Feynman path integrals and their applications Sonia Mazzucchi
title_fullStr Mathematical Feynman path integrals and their applications Sonia Mazzucchi
title_full_unstemmed Mathematical Feynman path integrals and their applications Sonia Mazzucchi
title_short Mathematical Feynman path integrals and their applications
title_sort mathematical feynman path integrals and their applications
topic MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
Feynman integrals
Pfadintegral (DE-588)4173973-5 gnd
topic_facet MATHEMATICS / Calculus
MATHEMATICS / Mathematical Analysis
Feynman integrals
Pfadintegral
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263
work_keys_str_mv AT mazzucchisonia mathematicalfeynmanpathintegralsandtheirapplications
AT worldscientificfirm mathematicalfeynmanpathintegralsandtheirapplications