Mathematical Feynman path integrals and their applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
©2009
|
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1047 Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043126996 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2009 xx o|||| 00||| eng d | ||
020 | |a 9789812836908 |9 978-981-283-690-8 | ||
020 | |a 9789812836915 |c electronic bk. |9 978-981-283-691-5 | ||
020 | |a 981283690X |9 981-283-690-X | ||
020 | |a 9812836918 |c electronic bk. |9 981-283-691-8 | ||
035 | |a (OCoLC)613396809 | ||
035 | |a (DE-599)BVBBV043126996 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 515.43 |2 22 | |
100 | 1 | |a Mazzucchi, Sonia |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Feynman path integrals and their applications |c Sonia Mazzucchi |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c ©2009 | |
300 | |a 1 Online-Ressource (viii, 216 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Includes bibliographical references (pages 197-213) and index | ||
500 | |a 1. Introduction. 1.1. Wiener's and Feynman's integration. 1.2. The Feynman functional. 1.3. Infinite dimensional oscillatory integrals -- 2. Infinite dimensional oscillatory integrals. 2.1. Finite dimensional oscillatory integrals. 2.2. The Parseval type equality. 2.3. Generalized Fresnel integrals. 2.4. Infinite dimensional oscillatory integrals. 2.5. Polynomial phase functions -- 3. Feynman Path Integrals and the Schrödinger equation. 3.1. The anharmonic oscillator with a bounded anharmonic potential. 3.2. Time dependent potentials. 3.3. Phase space Feynman path integrals. 3.4. Magnetic field. 3.5. Quartic potential -- 4. The stationary phase method and the semiclassical limit of quantum mechanics. 4.1. Asymptotic expansions. 4.2. The stationary phase method. Finite dimensional case. 4.3. The stationary phase method. Infinite dimensional case. 4.4. The semiclassical limit of quantum mechanics. 4.5. The trace formula -- 5. Open quantum systems. 5.1. Feynman path integrals and open quantum systems. 5.2. The Feynman-Vernon influence functional. 5.3. The stochastic Schrödinger equation -- 6. Alternative approaches to Feynman path integration. 6.1. Analytic continuation of Wiener integrals. 6.2. The sequential approach. 6.3. White noise calculus. 6.4. Poisson processes. 6.5. Further approaches and results | ||
500 | |a Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals | ||
650 | 7 | |a MATHEMATICS / Calculus |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Mathematical Analysis |2 bisacsh | |
650 | 4 | |a Feynman integrals | |
650 | 0 | 7 | |a Pfadintegral |0 (DE-588)4173973-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Pfadintegral |0 (DE-588)4173973-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028551187 | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263 |l DE-1046 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263 |l DE-1047 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1819295463581417473 |
---|---|
any_adam_object | |
author | Mazzucchi, Sonia |
author_facet | Mazzucchi, Sonia |
author_role | aut |
author_sort | Mazzucchi, Sonia |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV043126996 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)613396809 (DE-599)BVBBV043126996 |
dewey-full | 515.43 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.43 |
dewey-search | 515.43 |
dewey-sort | 3515.43 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04408nam a2200481zc 4500</leader><controlfield tag="001">BV043126996</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2009 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812836908</subfield><subfield code="9">978-981-283-690-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812836915</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-283-691-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">981283690X</subfield><subfield code="9">981-283-690-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812836918</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-283-691-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)613396809</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043126996</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.43</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mazzucchi, Sonia</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Feynman path integrals and their applications</subfield><subfield code="c">Sonia Mazzucchi</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">©2009</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (viii, 216 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 197-213) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction. 1.1. Wiener's and Feynman's integration. 1.2. The Feynman functional. 1.3. Infinite dimensional oscillatory integrals -- 2. Infinite dimensional oscillatory integrals. 2.1. Finite dimensional oscillatory integrals. 2.2. The Parseval type equality. 2.3. Generalized Fresnel integrals. 2.4. Infinite dimensional oscillatory integrals. 2.5. Polynomial phase functions -- 3. Feynman Path Integrals and the Schrödinger equation. 3.1. The anharmonic oscillator with a bounded anharmonic potential. 3.2. Time dependent potentials. 3.3. Phase space Feynman path integrals. 3.4. Magnetic field. 3.5. Quartic potential -- 4. The stationary phase method and the semiclassical limit of quantum mechanics. 4.1. Asymptotic expansions. 4.2. The stationary phase method. Finite dimensional case. 4.3. The stationary phase method. Infinite dimensional case. 4.4. The semiclassical limit of quantum mechanics. 4.5. The trace formula -- 5. Open quantum systems. 5.1. Feynman path integrals and open quantum systems. 5.2. The Feynman-Vernon influence functional. 5.3. The stochastic Schrödinger equation -- 6. Alternative approaches to Feynman path integration. 6.1. Analytic continuation of Wiener integrals. 6.2. The sequential approach. 6.3. White noise calculus. 6.4. Poisson processes. 6.5. Further approaches and results</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Feynman integrals</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pfadintegral</subfield><subfield code="0">(DE-588)4173973-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028551187</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043126996 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:42:35Z |
institution | BVB |
isbn | 9789812836908 9789812836915 981283690X 9812836918 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028551187 |
oclc_num | 613396809 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (viii, 216 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2009 |
publishDateSearch | 2009 |
publishDateSort | 2009 |
publisher | World Scientific Pub. Co. |
record_format | marc |
spelling | Mazzucchi, Sonia Verfasser aut Mathematical Feynman path integrals and their applications Sonia Mazzucchi Singapore World Scientific Pub. Co. ©2009 1 Online-Ressource (viii, 216 pages) txt rdacontent c rdamedia cr rdacarrier Includes bibliographical references (pages 197-213) and index 1. Introduction. 1.1. Wiener's and Feynman's integration. 1.2. The Feynman functional. 1.3. Infinite dimensional oscillatory integrals -- 2. Infinite dimensional oscillatory integrals. 2.1. Finite dimensional oscillatory integrals. 2.2. The Parseval type equality. 2.3. Generalized Fresnel integrals. 2.4. Infinite dimensional oscillatory integrals. 2.5. Polynomial phase functions -- 3. Feynman Path Integrals and the Schrödinger equation. 3.1. The anharmonic oscillator with a bounded anharmonic potential. 3.2. Time dependent potentials. 3.3. Phase space Feynman path integrals. 3.4. Magnetic field. 3.5. Quartic potential -- 4. The stationary phase method and the semiclassical limit of quantum mechanics. 4.1. Asymptotic expansions. 4.2. The stationary phase method. Finite dimensional case. 4.3. The stationary phase method. Infinite dimensional case. 4.4. The semiclassical limit of quantum mechanics. 4.5. The trace formula -- 5. Open quantum systems. 5.1. Feynman path integrals and open quantum systems. 5.2. The Feynman-Vernon influence functional. 5.3. The stochastic Schrödinger equation -- 6. Alternative approaches to Feynman path integration. 6.1. Analytic continuation of Wiener integrals. 6.2. The sequential approach. 6.3. White noise calculus. 6.4. Poisson processes. 6.5. Further approaches and results Although more than 60 years have passed since their first appearance, Feynman path integrals have yet to lose their fascination and luster. They are not only a formidable instrument of theoretical physics, but also a mathematical challenge; in fact, several mathematicians in the last 40 years have devoted their efforts to the rigorous mathematical definition of Feynman's ideas. This volume provides a detailed, self-contained description of the mathematical difficulties as well as the possible techniques used to solve these difficulties. In particular, it gives a complete overview of the mathematical realization of Feynman path integrals in terms of well-defined functional integrals, that is, the infinite dimensional oscillatory integrals. It contains the traditional results on the topic as well as the more recent developments obtained by the author. Mathematical Feynman Path Integrals and Their Applications is devoted to both mathematicians and physicists, graduate students and researchers who are interested in the problem of mathematical foundations of Feynman path integrals MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Feynman integrals Pfadintegral (DE-588)4173973-5 gnd rswk-swf Pfadintegral (DE-588)4173973-5 s 1\p DE-604 World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mazzucchi, Sonia Mathematical Feynman path integrals and their applications MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Feynman integrals Pfadintegral (DE-588)4173973-5 gnd |
subject_GND | (DE-588)4173973-5 |
title | Mathematical Feynman path integrals and their applications |
title_auth | Mathematical Feynman path integrals and their applications |
title_exact_search | Mathematical Feynman path integrals and their applications |
title_full | Mathematical Feynman path integrals and their applications Sonia Mazzucchi |
title_fullStr | Mathematical Feynman path integrals and their applications Sonia Mazzucchi |
title_full_unstemmed | Mathematical Feynman path integrals and their applications Sonia Mazzucchi |
title_short | Mathematical Feynman path integrals and their applications |
title_sort | mathematical feynman path integrals and their applications |
topic | MATHEMATICS / Calculus bisacsh MATHEMATICS / Mathematical Analysis bisacsh Feynman integrals Pfadintegral (DE-588)4173973-5 gnd |
topic_facet | MATHEMATICS / Calculus MATHEMATICS / Mathematical Analysis Feynman integrals Pfadintegral |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305263 |
work_keys_str_mv | AT mazzucchisonia mathematicalfeynmanpathintegralsandtheirapplications AT worldscientificfirm mathematicalfeynmanpathintegralsandtheirapplications |