Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Korotchenkov, G. S., (Gennadiĭ Sergeevich) (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Momentum Press LLC 2013
Schriftenreihe:Sensor technology series
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043124048
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2013 xx o|||| 00||| eng d
020 |a 1299731341  |9 1-299-73134-1 
020 |a 1606505963  |9 1-60650-596-3 
020 |a 160650598X  |9 1-60650-598-X 
020 |a 9781299731349  |9 978-1-299-73134-9 
020 |a 9781606505960  |9 978-1-60650-596-0 
020 |a 9781606505960  |9 978-1-60650-596-0 
020 |a 9781606505984  |9 978-1-60650-598-4 
035 |a (OCoLC)853240468 
035 |a (DE-599)BVBBV043124048 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 681.2  |2 23 
100 1 |a Korotchenkov, G. S., (Gennadiĭ Sergeevich)  |e Verfasser  |4 aut 
245 1 0 |a Chemical Sensors  |b Simulation and Modeling Volume 5: Electrochemical Sensors 
264 1 |b Momentum Press LLC  |c 2013 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Sensor technology series 
500 |a Preface -- About the editor -- Contributors 
500 |a Part 1. Solid-state electrochemical sensors -- 1. Surface and interface defects in ionic crystals / N.F. Uvarov -- 1. Introduction -- 1.1 Solid electrolytes and electrodes for electrochemical sensors: a brief overview -- 1.2 Surface and interface properties of ionic solids -- 2. Calculation of the surface potential and surface defects using the Stern model -- 2.1 Description of the model -- 2.2 Pure crystals of the NaCl type -- 2.3 Surface potential in NaCl crystals containing divalent cations -- 2.4 Comparison with experimental data -- 2.5 Surface potential and concentration of point defects on grain boundaries of superionic oxide ceramics -- 2.6 Surface disorder in terms of energy diagrams -- 2.7 Defects on interfaces -- 3. Size effects in nanocomposite solid electrolytes -- 4. Applications in sensors -- 5. Conclusions -- References 
500 |a 2. Solid-state electrochemical gas sensors / C.O. Park [and others] -- 1. Introduction -- 2. Electrode potentials -- 3. Types of electrochemical sensors -- 3.1 Equilibrium potentiometric sensors -- 3.2 Mixed potentiometric sensors -- 3.3 Amperometric sensors -- 4. Applications -- 4.1 Oxygen sensors -- 4.2 Carbon dioxide sensors -- 4.3 NOx sensors -- 4.4 SOx sensors -- 4.5 Hydrogen sensors -- Acknowledgments -- References 
500 |a Part 2. Electrochemical sensors for liquid environments -- 3. Modeling and simulation of ionic transport processes through ideal ion-exchange membrane systems / A.A. Moya -- 1. Introduction -- 2. Theoretical description -- 2.1 Ionic transport in ideal ion-exchange membrane systems -- 2.2 Electric current perturbations -- 2.3 Analytical solutions -- 3. The network model -- 4. Network simulation -- 4.1 Transient response -- 4.2 Electrochemical impedance -- 5. Conclusion -- Nomenclature -- Appendix -- Acknowledgments -- References 
500 |a 4. Mechanism of potential development for potentiometric sensors, based on modeling of interaction between electrochemically active compounds from the membrane and analyte / R.-I. Stefan-van Staden -- 1. Introduction -- 2. The membrane-solution interface -- 3. Membrane configuration -- 4. New theoretical model for potential development based on membrane equilibria -- 5. Mechanism of the potential development -- 6. Modeling, a theoretical approach to predict the response and mechanism of potential development -- 7. Selectivity of potentiometric sensors: explanation through membrane equilibria -- 7.1 Influence of the composition of the membrane on the selectivity of potentiometric sensors -- 8. Conclusions -- References 
500 |a 5. Computer modeling of the potentiometric response of ion-selective electrodes with ionophore-based membranes / K.N. Mikhelson -- 1. Introduction -- 2. Physical models of ionophore-based membranes -- 2.1 Levels of ISE membrane modeling -- 2.2 One-dimensional approach to ISE membrane modeling -- 2.3 Segmented model of the ISE membrane -- 2.4 Integral model of the ISE membrane -- 3. Computer modeling for the phase boundary theory -- 3.1 Description of the ISE response in mixed solutions containing differently charged ions -- 3.2 Description of apparently non-Nernstian response slopes of ion-selective electrodes -- 4. Modeling using the multispecies approximation -- 4.1 The essence of the multispecies approximation -- 4.2 System of equations for implementation of the multispecies model -- 4.3 Selected results of modeling using the multispecies approximation -- 5. Diffusion layer model: example of local equilibrium modeling -- 6. Advanced nonequilibrium modeling in real time and space -- 7. Conclusions -- Acknowledgments -- References 
500 |a 6. Models of response in mixed-ion solutions for ion-sensitive field-effect transistors / Sergio Bermejo -- 1. Introduction -- 2. ISFET basics -- 2.1 Principles of electrochemical operation -- 2.2 Structures and materials -- 3. Electrochemical models -- 3.1 The metal-solution junction -- 3.2 The oxide-solution junction -- 3.3 Membrane-based ISFETs -- 3.4 A general approach for ISFET modeling in mixed-ion solutions -- 4. Conclusions -- Appendix. SPICE models -- References -- Part 3. Electrochemical biosensors 
500 |a 7. Nanomaterial-based electrochemical biosensors / N. Jaffrezic-Renault -- 1. Introduction -- 2. Nanomaterials: fabrication, chemical and physical properties -- 2.1 Conducting nanomaterials -- 2.2 Nonconducting nanomaterials: magnetic nanoparticles -- 3. Conception and modeling of amplification effect in nanomaterial-based enzyme sensors -- 3.1 AuNPs-based amperometric sensors -- 3.2 CNT-based amperometric sensors -- 3.3 MNP-based amperometric biosensors -- 3.4 Potentiometric sensors -- 3.5 Conductometric and impedimetric biosensors -- 4. Conception and modeling of amplification effect in nanomaterial-based immunosensors -- 4.1 AuNP-based amperometric immunosensors -- 4.2 AuNP-based potentiometric sensors -- 4.3 Impedimetric sensors -- 4.4 Conductometric sensors -- 5. Conception and modeling of amplification effect in nanomaterial-based DNA biosensors -- 5.1 Amperometric sensors -- 5.2 Impedimetric sensors -- 6. Conclusion -- References 
500 |a 8. Ion-sensitive field-effect transistors with nanostructured channels and nanoparticle-modified gate surfaces: theory, modeling, and analysis / K. Khanna -- 1. Introduction -- 2. Structural configurations of the nanoscale ISFET -- 2.1 The nanoporous silicon ISFET -- 2.2 The CNT ISFET -- 2.3 The Si-NW ISFET -- 3. Physics of the Si-NW biosensor -- 3.1 Basic principle -- 3.2 Analogy with the nanocantilever -- 3.3 Preliminary analysis of micro-ISFET downscaling to nano-ISFET -- 3.4 Single-gate and dual-gate nanowire sensors -- 3.5 Energy-band model of the NW sensor -- 4. Nair-Alam model of Si-NW biosensors -- 4.1 The three regions in the biosensor -- 4.2 Computational approach -- 4.3 Effect of nanowire diameter (d) on sensitivity at different doping densities, with air as the surrounding medium -- 4.4 Effect of nanowire length (L) on sensitivity at different doping densities, with air as the surrounding medium -- 4.5 Effect of the fluidic environment -- 4.6 Overall model implications -- 5. pH response of silicon nanowires in terms of the site-binding and Gouy-Chapman-Stern models -- 6. Subthreshold regime as the optimal sensitivity regime of nanowire biosensors -- 7. Effective capacitance model for apparent surpassing of the Nernst limit by sensitivity of the dual-gate NW sensor -- 8. Tunnel field-effect transistor concept -- 9. Role of nanoparticles in ISFET gate functionalization -- 9.1 Supportive role of nanoparticles -- 9.2 Direct reactant role of nanoparticles -- 10. Neuron-CNT (carbon nanotube) ISFET junction modeling -- 11. Conclusions and perspectives -- Dedication -- Acknowledgments -- References 
500 |a 9. Biosensors: modeling and simulation of diffusion-limited processes / L. Rajendran -- 1. Introduction -- 1.1 Enzyme kinetics -- 1.2 Basic scheme of biosensors -- 1.3 The nonlinear reaction-diffusion equation and biosensors -- 1.4 Types of biosensors -- 1.5 Michaelis-Menten kinetics -- 1.6 Non-Michaelis-Menten kinetics -- 1.7 Importance of modeling and simulation of biosensors -- 2. Modeling of biosensors -- 2.1 Michaelis-Menten kinetics and potentiometric biosensors -- 2.2 Michaelis-Menten kinetics and amperometric biosensors -- 2.3 Michaelis-Menten kinetics and amperometric biosensors for immobilizing enzymes -- 2.4 Michaelis-Menten kinetics and the two-substrate model -- 2.5 Non-Michaelis-Menten kinetics -- 2.6 Other enzyme reaction mechanisms -- 2.7 Kinetics of enzyme action -- 2.8 Trienzyme biosensor -- 3. Microdisk biosensors -- 3.1 Introduction -- 3.2 Mathematical formulation of the problem -- 3.3 First-order catalytic kinetics -- 3.4 Zero-order catalytic kinetics -- 3.5 For all values of KM -- 3.6 Conclusions -- 4. Microcylinder biosensors -- 4.1 Introduction -- 4.2 Mathematical formulation of the problem -- 4.3 Analytical solutions of the concentrations and current -- 4.4 Comparison with limiting case of Rijiravanich's work -- 4.5 Discussion -- 4.6 Conclusions -- 4.7 PPO-modified microcylinder biosensors -- 5. Spherical biosensors -- 5.1 Simple Michaelis-Menten and product competitive inhibition kinetics -- 5.2 Immobilized enzyme for spherical biosensors -- 5.3 Conclusion -- Appendix. Various analytical schemes for solving nonlinear reaction diffusion equations -- A. Basic concept of the variational iteration method -- B. Basic concept of the homotopy perturbation method -- C. Basic concept of the homotopy analysis method -- D. Basic concept of the Adomian decomposition method -- References -- Index 
500 |a This is the fifth of a five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing. The important applications for chemical sensing include such topics as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions 
500 |a Includes bibliographical references and and index 
650 4 |a Chemical detectors 
650 4 |a Chemical detectors / Mathematical models 
650 4 |a Chemical detectors / Computer simulation 
650 4 |a Electrochemical sensors 
650 7 |a TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades  |2 bisacsh 
650 7 |a Chemical detectors  |2 fast 
650 7 |a Electrochemical sensors  |2 fast 
650 4 |a Mathematisches Modell 
650 4 |a Chemical detectors 
650 4 |a Electrochemical sensors 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=607374  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028548239 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=607374  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=607374  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295455323881472
any_adam_object
author Korotchenkov, G. S., (Gennadiĭ Sergeevich)
author_facet Korotchenkov, G. S., (Gennadiĭ Sergeevich)
author_role aut
author_sort Korotchenkov, G. S., (Gennadiĭ Sergeevich)
author_variant g s g s k gsgs gsgsk
building Verbundindex
bvnumber BV043124048
collection ZDB-4-EBA
ctrlnum (OCoLC)853240468
(DE-599)BVBBV043124048
dewey-full 681.2
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 681 - Precision instruments and other devices
dewey-raw 681.2
dewey-search 681.2
dewey-sort 3681.2
dewey-tens 680 - Manufacture of products for specific uses
discipline Handwerk und Gewerbe / Verschiedene Technologien
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>11241nam a2200661zc 4500</leader><controlfield tag="001">BV043124048</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1299731341</subfield><subfield code="9">1-299-73134-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1606505963</subfield><subfield code="9">1-60650-596-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">160650598X</subfield><subfield code="9">1-60650-598-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781299731349</subfield><subfield code="9">978-1-299-73134-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606505960</subfield><subfield code="9">978-1-60650-596-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606505960</subfield><subfield code="9">978-1-60650-596-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781606505984</subfield><subfield code="9">978-1-60650-598-4</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)853240468</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043124048</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">681.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Korotchenkov, G. S., (Gennadiĭ Sergeevich)</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chemical Sensors</subfield><subfield code="b">Simulation and Modeling Volume 5: Electrochemical Sensors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="b">Momentum Press LLC</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Sensor technology series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Preface -- About the editor -- Contributors</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part 1. Solid-state electrochemical sensors -- 1. Surface and interface defects in ionic crystals / N.F. Uvarov -- 1. Introduction -- 1.1 Solid electrolytes and electrodes for electrochemical sensors: a brief overview -- 1.2 Surface and interface properties of ionic solids -- 2. Calculation of the surface potential and surface defects using the Stern model -- 2.1 Description of the model -- 2.2 Pure crystals of the NaCl type -- 2.3 Surface potential in NaCl crystals containing divalent cations -- 2.4 Comparison with experimental data -- 2.5 Surface potential and concentration of point defects on grain boundaries of superionic oxide ceramics -- 2.6 Surface disorder in terms of energy diagrams -- 2.7 Defects on interfaces -- 3. Size effects in nanocomposite solid electrolytes -- 4. Applications in sensors -- 5. Conclusions -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2. Solid-state electrochemical gas sensors / C.O. Park [and others] -- 1. Introduction -- 2. Electrode potentials -- 3. Types of electrochemical sensors -- 3.1 Equilibrium potentiometric sensors -- 3.2 Mixed potentiometric sensors -- 3.3 Amperometric sensors -- 4. Applications -- 4.1 Oxygen sensors -- 4.2 Carbon dioxide sensors -- 4.3 NOx sensors -- 4.4 SOx sensors -- 4.5 Hydrogen sensors -- Acknowledgments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Part 2. Electrochemical sensors for liquid environments -- 3. Modeling and simulation of ionic transport processes through ideal ion-exchange membrane systems / A.A. Moya -- 1. Introduction -- 2. Theoretical description -- 2.1 Ionic transport in ideal ion-exchange membrane systems -- 2.2 Electric current perturbations -- 2.3 Analytical solutions -- 3. The network model -- 4. Network simulation -- 4.1 Transient response -- 4.2 Electrochemical impedance -- 5. Conclusion -- Nomenclature -- Appendix -- Acknowledgments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4. Mechanism of potential development for potentiometric sensors, based on modeling of interaction between electrochemically active compounds from the membrane and analyte / R.-I. Stefan-van Staden -- 1. Introduction -- 2. The membrane-solution interface -- 3. Membrane configuration -- 4. New theoretical model for potential development based on membrane equilibria -- 5. Mechanism of the potential development -- 6. Modeling, a theoretical approach to predict the response and mechanism of potential development -- 7. Selectivity of potentiometric sensors: explanation through membrane equilibria -- 7.1 Influence of the composition of the membrane on the selectivity of potentiometric sensors -- 8. Conclusions -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">5. Computer modeling of the potentiometric response of ion-selective electrodes with ionophore-based membranes / K.N. Mikhelson -- 1. Introduction -- 2. Physical models of ionophore-based membranes -- 2.1 Levels of ISE membrane modeling -- 2.2 One-dimensional approach to ISE membrane modeling -- 2.3 Segmented model of the ISE membrane -- 2.4 Integral model of the ISE membrane -- 3. Computer modeling for the phase boundary theory -- 3.1 Description of the ISE response in mixed solutions containing differently charged ions -- 3.2 Description of apparently non-Nernstian response slopes of ion-selective electrodes -- 4. Modeling using the multispecies approximation -- 4.1 The essence of the multispecies approximation -- 4.2 System of equations for implementation of the multispecies model -- 4.3 Selected results of modeling using the multispecies approximation -- 5. Diffusion layer model: example of local equilibrium modeling -- 6. Advanced nonequilibrium modeling in real time and space -- 7. Conclusions -- Acknowledgments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">6. Models of response in mixed-ion solutions for ion-sensitive field-effect transistors / Sergio Bermejo -- 1. Introduction -- 2. ISFET basics -- 2.1 Principles of electrochemical operation -- 2.2 Structures and materials -- 3. Electrochemical models -- 3.1 The metal-solution junction -- 3.2 The oxide-solution junction -- 3.3 Membrane-based ISFETs -- 3.4 A general approach for ISFET modeling in mixed-ion solutions -- 4. Conclusions -- Appendix. SPICE models -- References -- Part 3. Electrochemical biosensors</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">7. Nanomaterial-based electrochemical biosensors / N. Jaffrezic-Renault -- 1. Introduction -- 2. Nanomaterials: fabrication, chemical and physical properties -- 2.1 Conducting nanomaterials -- 2.2 Nonconducting nanomaterials: magnetic nanoparticles -- 3. Conception and modeling of amplification effect in nanomaterial-based enzyme sensors -- 3.1 AuNPs-based amperometric sensors -- 3.2 CNT-based amperometric sensors -- 3.3 MNP-based amperometric biosensors -- 3.4 Potentiometric sensors -- 3.5 Conductometric and impedimetric biosensors -- 4. Conception and modeling of amplification effect in nanomaterial-based immunosensors -- 4.1 AuNP-based amperometric immunosensors -- 4.2 AuNP-based potentiometric sensors -- 4.3 Impedimetric sensors -- 4.4 Conductometric sensors -- 5. Conception and modeling of amplification effect in nanomaterial-based DNA biosensors -- 5.1 Amperometric sensors -- 5.2 Impedimetric sensors -- 6. Conclusion -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">8. Ion-sensitive field-effect transistors with nanostructured channels and nanoparticle-modified gate surfaces: theory, modeling, and analysis / K. Khanna -- 1. Introduction -- 2. Structural configurations of the nanoscale ISFET -- 2.1 The nanoporous silicon ISFET -- 2.2 The CNT ISFET -- 2.3 The Si-NW ISFET -- 3. Physics of the Si-NW biosensor -- 3.1 Basic principle -- 3.2 Analogy with the nanocantilever -- 3.3 Preliminary analysis of micro-ISFET downscaling to nano-ISFET -- 3.4 Single-gate and dual-gate nanowire sensors -- 3.5 Energy-band model of the NW sensor -- 4. Nair-Alam model of Si-NW biosensors -- 4.1 The three regions in the biosensor -- 4.2 Computational approach -- 4.3 Effect of nanowire diameter (d) on sensitivity at different doping densities, with air as the surrounding medium -- 4.4 Effect of nanowire length (L) on sensitivity at different doping densities, with air as the surrounding medium -- 4.5 Effect of the fluidic environment -- 4.6 Overall model implications -- 5. pH response of silicon nanowires in terms of the site-binding and Gouy-Chapman-Stern models -- 6. Subthreshold regime as the optimal sensitivity regime of nanowire biosensors -- 7. Effective capacitance model for apparent surpassing of the Nernst limit by sensitivity of the dual-gate NW sensor -- 8. Tunnel field-effect transistor concept -- 9. Role of nanoparticles in ISFET gate functionalization -- 9.1 Supportive role of nanoparticles -- 9.2 Direct reactant role of nanoparticles -- 10. Neuron-CNT (carbon nanotube) ISFET junction modeling -- 11. Conclusions and perspectives -- Dedication -- Acknowledgments -- References</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">9. Biosensors: modeling and simulation of diffusion-limited processes / L. Rajendran -- 1. Introduction -- 1.1 Enzyme kinetics -- 1.2 Basic scheme of biosensors -- 1.3 The nonlinear reaction-diffusion equation and biosensors -- 1.4 Types of biosensors -- 1.5 Michaelis-Menten kinetics -- 1.6 Non-Michaelis-Menten kinetics -- 1.7 Importance of modeling and simulation of biosensors -- 2. Modeling of biosensors -- 2.1 Michaelis-Menten kinetics and potentiometric biosensors -- 2.2 Michaelis-Menten kinetics and amperometric biosensors -- 2.3 Michaelis-Menten kinetics and amperometric biosensors for immobilizing enzymes -- 2.4 Michaelis-Menten kinetics and the two-substrate model -- 2.5 Non-Michaelis-Menten kinetics -- 2.6 Other enzyme reaction mechanisms -- 2.7 Kinetics of enzyme action -- 2.8 Trienzyme biosensor -- 3. Microdisk biosensors -- 3.1 Introduction -- 3.2 Mathematical formulation of the problem -- 3.3 First-order catalytic kinetics -- 3.4 Zero-order catalytic kinetics -- 3.5 For all values of KM -- 3.6 Conclusions -- 4. Microcylinder biosensors -- 4.1 Introduction -- 4.2 Mathematical formulation of the problem -- 4.3 Analytical solutions of the concentrations and current -- 4.4 Comparison with limiting case of Rijiravanich's work -- 4.5 Discussion -- 4.6 Conclusions -- 4.7 PPO-modified microcylinder biosensors -- 5. Spherical biosensors -- 5.1 Simple Michaelis-Menten and product competitive inhibition kinetics -- 5.2 Immobilized enzyme for spherical biosensors -- 5.3 Conclusion -- Appendix. Various analytical schemes for solving nonlinear reaction diffusion equations -- A. Basic concept of the variational iteration method -- B. Basic concept of the homotopy perturbation method -- C. Basic concept of the homotopy analysis method -- D. Basic concept of the Adomian decomposition method -- References -- Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is the fifth of a five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing. The important applications for chemical sensing include such topics as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and and index</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical detectors / Mathematical models</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical detectors / Computer simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical sensors</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY &amp; ENGINEERING / Technical &amp; Manufacturing Industries &amp; Trades</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Chemical detectors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Electrochemical sensors</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematisches Modell</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical detectors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrochemical sensors</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=607374</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028548239</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=607374</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=607374</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043124048
illustrated Not Illustrated
indexdate 2024-12-24T04:42:29Z
institution BVB
isbn 1299731341
1606505963
160650598X
9781299731349
9781606505960
9781606505984
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028548239
oclc_num 853240468
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Momentum Press LLC
record_format marc
series2 Sensor technology series
spelling Korotchenkov, G. S., (Gennadiĭ Sergeevich) Verfasser aut
Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors
Momentum Press LLC 2013
1 Online-Ressource
txt rdacontent
c rdamedia
cr rdacarrier
Sensor technology series
Preface -- About the editor -- Contributors
Part 1. Solid-state electrochemical sensors -- 1. Surface and interface defects in ionic crystals / N.F. Uvarov -- 1. Introduction -- 1.1 Solid electrolytes and electrodes for electrochemical sensors: a brief overview -- 1.2 Surface and interface properties of ionic solids -- 2. Calculation of the surface potential and surface defects using the Stern model -- 2.1 Description of the model -- 2.2 Pure crystals of the NaCl type -- 2.3 Surface potential in NaCl crystals containing divalent cations -- 2.4 Comparison with experimental data -- 2.5 Surface potential and concentration of point defects on grain boundaries of superionic oxide ceramics -- 2.6 Surface disorder in terms of energy diagrams -- 2.7 Defects on interfaces -- 3. Size effects in nanocomposite solid electrolytes -- 4. Applications in sensors -- 5. Conclusions -- References
2. Solid-state electrochemical gas sensors / C.O. Park [and others] -- 1. Introduction -- 2. Electrode potentials -- 3. Types of electrochemical sensors -- 3.1 Equilibrium potentiometric sensors -- 3.2 Mixed potentiometric sensors -- 3.3 Amperometric sensors -- 4. Applications -- 4.1 Oxygen sensors -- 4.2 Carbon dioxide sensors -- 4.3 NOx sensors -- 4.4 SOx sensors -- 4.5 Hydrogen sensors -- Acknowledgments -- References
Part 2. Electrochemical sensors for liquid environments -- 3. Modeling and simulation of ionic transport processes through ideal ion-exchange membrane systems / A.A. Moya -- 1. Introduction -- 2. Theoretical description -- 2.1 Ionic transport in ideal ion-exchange membrane systems -- 2.2 Electric current perturbations -- 2.3 Analytical solutions -- 3. The network model -- 4. Network simulation -- 4.1 Transient response -- 4.2 Electrochemical impedance -- 5. Conclusion -- Nomenclature -- Appendix -- Acknowledgments -- References
4. Mechanism of potential development for potentiometric sensors, based on modeling of interaction between electrochemically active compounds from the membrane and analyte / R.-I. Stefan-van Staden -- 1. Introduction -- 2. The membrane-solution interface -- 3. Membrane configuration -- 4. New theoretical model for potential development based on membrane equilibria -- 5. Mechanism of the potential development -- 6. Modeling, a theoretical approach to predict the response and mechanism of potential development -- 7. Selectivity of potentiometric sensors: explanation through membrane equilibria -- 7.1 Influence of the composition of the membrane on the selectivity of potentiometric sensors -- 8. Conclusions -- References
5. Computer modeling of the potentiometric response of ion-selective electrodes with ionophore-based membranes / K.N. Mikhelson -- 1. Introduction -- 2. Physical models of ionophore-based membranes -- 2.1 Levels of ISE membrane modeling -- 2.2 One-dimensional approach to ISE membrane modeling -- 2.3 Segmented model of the ISE membrane -- 2.4 Integral model of the ISE membrane -- 3. Computer modeling for the phase boundary theory -- 3.1 Description of the ISE response in mixed solutions containing differently charged ions -- 3.2 Description of apparently non-Nernstian response slopes of ion-selective electrodes -- 4. Modeling using the multispecies approximation -- 4.1 The essence of the multispecies approximation -- 4.2 System of equations for implementation of the multispecies model -- 4.3 Selected results of modeling using the multispecies approximation -- 5. Diffusion layer model: example of local equilibrium modeling -- 6. Advanced nonequilibrium modeling in real time and space -- 7. Conclusions -- Acknowledgments -- References
6. Models of response in mixed-ion solutions for ion-sensitive field-effect transistors / Sergio Bermejo -- 1. Introduction -- 2. ISFET basics -- 2.1 Principles of electrochemical operation -- 2.2 Structures and materials -- 3. Electrochemical models -- 3.1 The metal-solution junction -- 3.2 The oxide-solution junction -- 3.3 Membrane-based ISFETs -- 3.4 A general approach for ISFET modeling in mixed-ion solutions -- 4. Conclusions -- Appendix. SPICE models -- References -- Part 3. Electrochemical biosensors
7. Nanomaterial-based electrochemical biosensors / N. Jaffrezic-Renault -- 1. Introduction -- 2. Nanomaterials: fabrication, chemical and physical properties -- 2.1 Conducting nanomaterials -- 2.2 Nonconducting nanomaterials: magnetic nanoparticles -- 3. Conception and modeling of amplification effect in nanomaterial-based enzyme sensors -- 3.1 AuNPs-based amperometric sensors -- 3.2 CNT-based amperometric sensors -- 3.3 MNP-based amperometric biosensors -- 3.4 Potentiometric sensors -- 3.5 Conductometric and impedimetric biosensors -- 4. Conception and modeling of amplification effect in nanomaterial-based immunosensors -- 4.1 AuNP-based amperometric immunosensors -- 4.2 AuNP-based potentiometric sensors -- 4.3 Impedimetric sensors -- 4.4 Conductometric sensors -- 5. Conception and modeling of amplification effect in nanomaterial-based DNA biosensors -- 5.1 Amperometric sensors -- 5.2 Impedimetric sensors -- 6. Conclusion -- References
8. Ion-sensitive field-effect transistors with nanostructured channels and nanoparticle-modified gate surfaces: theory, modeling, and analysis / K. Khanna -- 1. Introduction -- 2. Structural configurations of the nanoscale ISFET -- 2.1 The nanoporous silicon ISFET -- 2.2 The CNT ISFET -- 2.3 The Si-NW ISFET -- 3. Physics of the Si-NW biosensor -- 3.1 Basic principle -- 3.2 Analogy with the nanocantilever -- 3.3 Preliminary analysis of micro-ISFET downscaling to nano-ISFET -- 3.4 Single-gate and dual-gate nanowire sensors -- 3.5 Energy-band model of the NW sensor -- 4. Nair-Alam model of Si-NW biosensors -- 4.1 The three regions in the biosensor -- 4.2 Computational approach -- 4.3 Effect of nanowire diameter (d) on sensitivity at different doping densities, with air as the surrounding medium -- 4.4 Effect of nanowire length (L) on sensitivity at different doping densities, with air as the surrounding medium -- 4.5 Effect of the fluidic environment -- 4.6 Overall model implications -- 5. pH response of silicon nanowires in terms of the site-binding and Gouy-Chapman-Stern models -- 6. Subthreshold regime as the optimal sensitivity regime of nanowire biosensors -- 7. Effective capacitance model for apparent surpassing of the Nernst limit by sensitivity of the dual-gate NW sensor -- 8. Tunnel field-effect transistor concept -- 9. Role of nanoparticles in ISFET gate functionalization -- 9.1 Supportive role of nanoparticles -- 9.2 Direct reactant role of nanoparticles -- 10. Neuron-CNT (carbon nanotube) ISFET junction modeling -- 11. Conclusions and perspectives -- Dedication -- Acknowledgments -- References
9. Biosensors: modeling and simulation of diffusion-limited processes / L. Rajendran -- 1. Introduction -- 1.1 Enzyme kinetics -- 1.2 Basic scheme of biosensors -- 1.3 The nonlinear reaction-diffusion equation and biosensors -- 1.4 Types of biosensors -- 1.5 Michaelis-Menten kinetics -- 1.6 Non-Michaelis-Menten kinetics -- 1.7 Importance of modeling and simulation of biosensors -- 2. Modeling of biosensors -- 2.1 Michaelis-Menten kinetics and potentiometric biosensors -- 2.2 Michaelis-Menten kinetics and amperometric biosensors -- 2.3 Michaelis-Menten kinetics and amperometric biosensors for immobilizing enzymes -- 2.4 Michaelis-Menten kinetics and the two-substrate model -- 2.5 Non-Michaelis-Menten kinetics -- 2.6 Other enzyme reaction mechanisms -- 2.7 Kinetics of enzyme action -- 2.8 Trienzyme biosensor -- 3. Microdisk biosensors -- 3.1 Introduction -- 3.2 Mathematical formulation of the problem -- 3.3 First-order catalytic kinetics -- 3.4 Zero-order catalytic kinetics -- 3.5 For all values of KM -- 3.6 Conclusions -- 4. Microcylinder biosensors -- 4.1 Introduction -- 4.2 Mathematical formulation of the problem -- 4.3 Analytical solutions of the concentrations and current -- 4.4 Comparison with limiting case of Rijiravanich's work -- 4.5 Discussion -- 4.6 Conclusions -- 4.7 PPO-modified microcylinder biosensors -- 5. Spherical biosensors -- 5.1 Simple Michaelis-Menten and product competitive inhibition kinetics -- 5.2 Immobilized enzyme for spherical biosensors -- 5.3 Conclusion -- Appendix. Various analytical schemes for solving nonlinear reaction diffusion equations -- A. Basic concept of the variational iteration method -- B. Basic concept of the homotopy perturbation method -- C. Basic concept of the homotopy analysis method -- D. Basic concept of the Adomian decomposition method -- References -- Index
This is the fifth of a five-volume comprehensive reference work that provides computer simulation and modeling techniques in various fields of chemical sensing. The important applications for chemical sensing include such topics as bulk and surface diffusion, adsorption, surface reactions, sintering, conductivity, mass transport, and interphase interactions
Includes bibliographical references and and index
Chemical detectors
Chemical detectors / Mathematical models
Chemical detectors / Computer simulation
Electrochemical sensors
TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades bisacsh
Chemical detectors fast
Electrochemical sensors fast
Mathematisches Modell
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=607374 Aggregator Volltext
spellingShingle Korotchenkov, G. S., (Gennadiĭ Sergeevich)
Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors
Chemical detectors
Chemical detectors / Mathematical models
Chemical detectors / Computer simulation
Electrochemical sensors
TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades bisacsh
Chemical detectors fast
Electrochemical sensors fast
Mathematisches Modell
title Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors
title_auth Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors
title_exact_search Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors
title_full Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors
title_fullStr Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors
title_full_unstemmed Chemical Sensors Simulation and Modeling Volume 5: Electrochemical Sensors
title_short Chemical Sensors
title_sort chemical sensors simulation and modeling volume 5 electrochemical sensors
title_sub Simulation and Modeling Volume 5: Electrochemical Sensors
topic Chemical detectors
Chemical detectors / Mathematical models
Chemical detectors / Computer simulation
Electrochemical sensors
TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades bisacsh
Chemical detectors fast
Electrochemical sensors fast
Mathematisches Modell
topic_facet Chemical detectors
Chemical detectors / Mathematical models
Chemical detectors / Computer simulation
Electrochemical sensors
TECHNOLOGY & ENGINEERING / Technical & Manufacturing Industries & Trades
Mathematisches Modell
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=607374
work_keys_str_mv AT korotchenkovgsgennadiisergeevich chemicalsensorssimulationandmodelingvolume5electrochemicalsensors