Hochschild cohomology of von Neumann algebras

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Sinclair, Allan M. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge Cambridge University Press 1995
Schriftenreihe:London Mathematical Society lecture note series 203
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043112168
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s1995 xx o|||| 00||| eng d
020 |a 0511526199  |c ebook  |9 0-511-52619-9 
020 |a 0521478804  |9 0-521-47880-4 
020 |a 1107362148  |c electronic bk.  |9 1-107-36214-8 
020 |a 9780511526190  |c ebook  |9 978-0-511-52619-0 
020 |a 9780521478809  |9 978-0-521-47880-9 
020 |a 9781107362147  |c electronic bk.  |9 978-1-107-36214-7 
035 |a (OCoLC)836864277 
035 |a (DE-599)BVBBV043112168 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 514/.23  |2 22 
100 1 |a Sinclair, Allan M.  |e Verfasser  |4 aut 
245 1 0 |a Hochschild cohomology of von Neumann algebras  |c Allan M. Sinclair, Roger R. Smith 
264 1 |a Cambridge  |b Cambridge University Press  |c 1995 
300 |a 1 Online-Ressource (vii, 196 p.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society lecture note series  |v 203 
500 |a Includes bibliographical references (p. [182]-191] and index 
500 |a 1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix 
500 |a The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields 
650 7 |a Homologie  |2 ram 
650 7 |a Von Neumann, algèbres de  |2 ram 
650 7 |a Homologische algebra  |2 gtt 
650 7 |a Von Neumann-algebra's  |2 gtt 
650 7 |a MATHEMATICS / Topology  |2 bisacsh 
650 7 |a Homology theory  |2 fast 
650 7 |a Von Neumann algebras  |2 fast 
650 4 |a Homology theory 
650 4 |a Von Neumann algebras 
650 0 7 |a Hochschild-Kohomologie  |0 (DE-588)4374357-2  |2 gnd  |9 rswk-swf 
650 0 7 |a VonNeumann-Algebra  |0 (DE-588)4388395-3  |2 gnd  |9 rswk-swf 
689 0 0 |a Hochschild-Kohomologie  |0 (DE-588)4374357-2  |D s 
689 0 1 |a VonNeumann-Algebra  |0 (DE-588)4388395-3  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Smith, Roger R.  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028536359 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295432351678464
any_adam_object
author Sinclair, Allan M.
author_facet Sinclair, Allan M.
author_role aut
author_sort Sinclair, Allan M.
author_variant a m s am ams
building Verbundindex
bvnumber BV043112168
collection ZDB-4-EBA
ctrlnum (OCoLC)836864277
(DE-599)BVBBV043112168
dewey-full 514/.23
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514/.23
dewey-search 514/.23
dewey-sort 3514 223
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03500nam a2200613zcb4500</leader><controlfield tag="001">BV043112168</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s1995 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0511526199</subfield><subfield code="c">ebook</subfield><subfield code="9">0-511-52619-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0521478804</subfield><subfield code="9">0-521-47880-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1107362148</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-107-36214-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780511526190</subfield><subfield code="c">ebook</subfield><subfield code="9">978-0-511-52619-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780521478809</subfield><subfield code="9">978-0-521-47880-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781107362147</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-107-36214-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)836864277</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043112168</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514/.23</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sinclair, Allan M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hochschild cohomology of von Neumann algebras</subfield><subfield code="c">Allan M. Sinclair, Roger R. Smith</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge</subfield><subfield code="b">Cambridge University Press</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (vii, 196 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society lecture note series</subfield><subfield code="v">203</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. [182]-191] and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologie</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Von Neumann, algèbres de</subfield><subfield code="2">ram</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homologische algebra</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Von Neumann-algebra's</subfield><subfield code="2">gtt</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Topology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Homology theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Von Neumann algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homology theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Von Neumann algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hochschild-Kohomologie</subfield><subfield code="0">(DE-588)4374357-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">VonNeumann-Algebra</subfield><subfield code="0">(DE-588)4388395-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hochschild-Kohomologie</subfield><subfield code="0">(DE-588)4374357-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">VonNeumann-Algebra</subfield><subfield code="0">(DE-588)4388395-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Smith, Roger R.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=552469</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028536359</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=552469</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=552469</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043112168
illustrated Not Illustrated
indexdate 2024-12-24T04:42:07Z
institution BVB
isbn 0511526199
0521478804
1107362148
9780511526190
9780521478809
9781107362147
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028536359
oclc_num 836864277
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (vii, 196 p.)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 1995
publishDateSearch 1995
publishDateSort 1995
publisher Cambridge University Press
record_format marc
series2 London Mathematical Society lecture note series
spelling Sinclair, Allan M. Verfasser aut
Hochschild cohomology of von Neumann algebras Allan M. Sinclair, Roger R. Smith
Cambridge Cambridge University Press 1995
1 Online-Ressource (vii, 196 p.)
txt rdacontent
c rdamedia
cr rdacarrier
London Mathematical Society lecture note series 203
Includes bibliographical references (p. [182]-191] and index
1. Completely Bounded Operators -- 2. Derivations -- 3. Averaging in Continuous and Normal Cohomology -- 4. Completely Bounded Cohomology -- 5. Hyperfinite Subalgebras -- 6. Continuous Cohomology -- 7. Stability of Products -- 8. Appendix
The continuous Hochschild cohomology of dual normal modules over a von Neumann algebra is the subject of this book. The necessary technical results are developed assuming a familiarity with basic C*-algebra and von Neumann algebra theory, including the decomposition into two types, but no prior knowledge of cohomology theory is required and the theory of completely bounded and multilinear operators is given fully. Central to this book are those cases when the continuous Hochschild cohomology H[superscript n](M, M) of the von Neumann algebra M over itself is zero. The material in this book lies in the area common to Banach algebras, operator algebras and homological algebra, and will be of interest to researchers from these fields
Homologie ram
Von Neumann, algèbres de ram
Homologische algebra gtt
Von Neumann-algebra's gtt
MATHEMATICS / Topology bisacsh
Homology theory fast
Von Neumann algebras fast
Homology theory
Von Neumann algebras
Hochschild-Kohomologie (DE-588)4374357-2 gnd rswk-swf
VonNeumann-Algebra (DE-588)4388395-3 gnd rswk-swf
Hochschild-Kohomologie (DE-588)4374357-2 s
VonNeumann-Algebra (DE-588)4388395-3 s
1\p DE-604
Smith, Roger R. Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Sinclair, Allan M.
Hochschild cohomology of von Neumann algebras
Homologie ram
Von Neumann, algèbres de ram
Homologische algebra gtt
Von Neumann-algebra's gtt
MATHEMATICS / Topology bisacsh
Homology theory fast
Von Neumann algebras fast
Homology theory
Von Neumann algebras
Hochschild-Kohomologie (DE-588)4374357-2 gnd
VonNeumann-Algebra (DE-588)4388395-3 gnd
subject_GND (DE-588)4374357-2
(DE-588)4388395-3
title Hochschild cohomology of von Neumann algebras
title_auth Hochschild cohomology of von Neumann algebras
title_exact_search Hochschild cohomology of von Neumann algebras
title_full Hochschild cohomology of von Neumann algebras Allan M. Sinclair, Roger R. Smith
title_fullStr Hochschild cohomology of von Neumann algebras Allan M. Sinclair, Roger R. Smith
title_full_unstemmed Hochschild cohomology of von Neumann algebras Allan M. Sinclair, Roger R. Smith
title_short Hochschild cohomology of von Neumann algebras
title_sort hochschild cohomology of von neumann algebras
topic Homologie ram
Von Neumann, algèbres de ram
Homologische algebra gtt
Von Neumann-algebra's gtt
MATHEMATICS / Topology bisacsh
Homology theory fast
Von Neumann algebras fast
Homology theory
Von Neumann algebras
Hochschild-Kohomologie (DE-588)4374357-2 gnd
VonNeumann-Algebra (DE-588)4388395-3 gnd
topic_facet Homologie
Von Neumann, algèbres de
Homologische algebra
Von Neumann-algebra's
MATHEMATICS / Topology
Homology theory
Von Neumann algebras
Hochschild-Kohomologie
VonNeumann-Algebra
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=552469
work_keys_str_mv AT sinclairallanm hochschildcohomologyofvonneumannalgebras
AT smithrogerr hochschildcohomologyofvonneumannalgebras