Lattice Boltzmann method and its applications in engineering
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Singapore
World Scientific Pub. Co.
©2013
|
Schriftenreihe: | Advances in computational fluid dynamics
v. 3 |
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1047 Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043106387 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2013 xx o|||| 00||| eng d | ||
020 | |a 9789814508292 |9 978-981-4508-29-2 | ||
020 | |a 9789814508308 |9 978-981-4508-30-8 | ||
020 | |a 9814508306 |9 981-4508-30-6 | ||
035 | |a (OCoLC)844311044 | ||
035 | |a (DE-599)BVBBV043106387 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.411 |2 22 | |
100 | 1 | |a Guo, Zhaoli |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lattice Boltzmann method and its applications in engineering |c Zhaoli Guo, Chang Shu |
264 | 1 | |a Singapore |b World Scientific Pub. Co. |c ©2013 | |
300 | |a 1 Online-Ressource (xiii, 404 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in computational fluid dynamics |v v. 3 | |
500 | |a Includes bibliographical references (pages 373-396) and index | ||
500 | |a Ch. 1. Introduction. 1.1. Description of fluid system at different scales. 1.2. Numerical methods for fluid flows. 1.3. History of LBE. 1.4. Basic models of LBE. 1.5. Summary -- ch. 2. Initial and boundary conditions for lattice Boltzmann method. 2.1. Initial conditions. 2.2. Boundary conditions for flat walls. 2.3. Boundary conditions for curved walls. 2.4. Pressure boundary conditions. 2.5. Summary -- ch. 3. Improved lattice Boltzmann models. 3.1. Incompressible models. 3.2. Forcing schemes with reduced discrete lattice effects. 3.3. LBE with nonuniform grids. 3.4. Accelerated LBE methods for steady flows. 3.5. Summary -- ch. 4. Sample applications of LBE for isothermal flows. 4.1. Algorithm structure of LBE. 4.2. Lid-driven cavity flow. 4.3. Flow around a fixed circular cylinder. 4.4. Flow around an oscillating circular cylinder with a fixed downstream one. 4.5. Summary -- | ||
500 | |a - ch. 5. LBE for low speed flows with heat transfer. 5.1. Multi-speed models. 5.2. MS-LBE models based on Boltzmann equation. 5.3. Off-lattice LBE models. 5.4. MS-LBE models with adjustable Prandtl number. 5.5. DDF-LBE models without viscous dissipation and compression work. 5.6. DDF-LBE with viscous dissipation and compression work -- internal energy formulation. 5.7. DDF-LBE with viscous dissipation and compression work -- total energy formulation. 5.8. Hybrid LBE models. 5.9. Summary -- | ||
500 | |a - ch. 6. LBE for compressible flows. 6.1. Limitation of conventional LBE models for compressible flows. 6.2. Conventional equilibrium function-based LBE models for compressible flows. 6.3. Circular function-based LBE models for compressible flows. 6.4. Delta function-based LBE models for compressible flows. 6.5. Direct derivation of equilibrium distribution functions from conservation of moments. 6.6. Solution of discrete velocity Boltzmann equation. 6.7. Lattice Boltzmann flux solver for solution of Euler equations. 6.8. Some sample applications. 6.9. Summary -- ch. 7. LBE for multiphase and multi-component flows. 7.1. Color models. 7.2. Pseudo-potential models. 7.3. Free energy models. 7.4. LBE models based on kinetic theories. 7.5. Summary -- ch. 8. LBE for microscale gas flows. 8.1. Introduction. 8.2. Fundamental issues in LBE for micro gaseous flows. 8.3. LBE for slip flows. 8.4. LBE for transition flows. 8.5. LBE for microscale binary mixture flows. 8.6. Summary -- | ||
500 | |a - ch. 9. Other applications of LBE. 9.1. Applications of LBE for particulate flows. 9.2. Applications of LBE for flows in porous media. 9.3. Applications of LBE for turbulent flows. 9.4. Immersed boundary-lattice Boltzmann method and its applications. 9.5. Summary | ||
500 | |a Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions. With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method | ||
650 | 7 | |a SCIENCE / Nanoscience |2 bisacsh | |
650 | 4 | |a Lattice Boltzmann methods | |
650 | 0 | 7 | |a Strömungsmechanik |0 (DE-588)4077970-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gitter-Boltzmann-Methode |0 (DE-588)4772570-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Strömungsmechanik |0 (DE-588)4077970-1 |D s |
689 | 0 | 1 | |a Gitter-Boltzmann-Methode |0 (DE-588)4772570-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Shu, Chang |e Sonstige |4 oth | |
710 | 2 | |a World Scientific (Firm) |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575395 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028530578 | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575395 |l DE-1046 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575395 |l DE-1047 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1819295422603067392 |
---|---|
any_adam_object | |
author | Guo, Zhaoli |
author_facet | Guo, Zhaoli |
author_role | aut |
author_sort | Guo, Zhaoli |
author_variant | z g zg |
building | Verbundindex |
bvnumber | BV043106387 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)844311044 (DE-599)BVBBV043106387 |
dewey-full | 530.411 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.411 |
dewey-search | 530.411 |
dewey-sort | 3530.411 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06007nam a2200541zcb4500</leader><controlfield tag="001">BV043106387</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2013 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814508292</subfield><subfield code="9">978-981-4508-29-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814508308</subfield><subfield code="9">978-981-4508-30-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814508306</subfield><subfield code="9">981-4508-30-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)844311044</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043106387</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.411</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Zhaoli</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lattice Boltzmann method and its applications in engineering</subfield><subfield code="c">Zhaoli Guo, Chang Shu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific Pub. Co.</subfield><subfield code="c">©2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 404 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in computational fluid dynamics</subfield><subfield code="v">v. 3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 373-396) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Ch. 1. Introduction. 1.1. Description of fluid system at different scales. 1.2. Numerical methods for fluid flows. 1.3. History of LBE. 1.4. Basic models of LBE. 1.5. Summary -- ch. 2. Initial and boundary conditions for lattice Boltzmann method. 2.1. Initial conditions. 2.2. Boundary conditions for flat walls. 2.3. Boundary conditions for curved walls. 2.4. Pressure boundary conditions. 2.5. Summary -- ch. 3. Improved lattice Boltzmann models. 3.1. Incompressible models. 3.2. Forcing schemes with reduced discrete lattice effects. 3.3. LBE with nonuniform grids. 3.4. Accelerated LBE methods for steady flows. 3.5. Summary -- ch. 4. Sample applications of LBE for isothermal flows. 4.1. Algorithm structure of LBE. 4.2. Lid-driven cavity flow. 4.3. Flow around a fixed circular cylinder. 4.4. Flow around an oscillating circular cylinder with a fixed downstream one. 4.5. Summary -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - ch. 5. LBE for low speed flows with heat transfer. 5.1. Multi-speed models. 5.2. MS-LBE models based on Boltzmann equation. 5.3. Off-lattice LBE models. 5.4. MS-LBE models with adjustable Prandtl number. 5.5. DDF-LBE models without viscous dissipation and compression work. 5.6. DDF-LBE with viscous dissipation and compression work -- internal energy formulation. 5.7. DDF-LBE with viscous dissipation and compression work -- total energy formulation. 5.8. Hybrid LBE models. 5.9. Summary -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - ch. 6. LBE for compressible flows. 6.1. Limitation of conventional LBE models for compressible flows. 6.2. Conventional equilibrium function-based LBE models for compressible flows. 6.3. Circular function-based LBE models for compressible flows. 6.4. Delta function-based LBE models for compressible flows. 6.5. Direct derivation of equilibrium distribution functions from conservation of moments. 6.6. Solution of discrete velocity Boltzmann equation. 6.7. Lattice Boltzmann flux solver for solution of Euler equations. 6.8. Some sample applications. 6.9. Summary -- ch. 7. LBE for multiphase and multi-component flows. 7.1. Color models. 7.2. Pseudo-potential models. 7.3. Free energy models. 7.4. LBE models based on kinetic theories. 7.5. Summary -- ch. 8. LBE for microscale gas flows. 8.1. Introduction. 8.2. Fundamental issues in LBE for micro gaseous flows. 8.3. LBE for slip flows. 8.4. LBE for transition flows. 8.5. LBE for microscale binary mixture flows. 8.6. Summary -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - ch. 9. Other applications of LBE. 9.1. Applications of LBE for particulate flows. 9.2. Applications of LBE for flows in porous media. 9.3. Applications of LBE for turbulent flows. 9.4. Immersed boundary-lattice Boltzmann method and its applications. 9.5. Summary</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions. With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Nanoscience</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice Boltzmann methods</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gitter-Boltzmann-Methode</subfield><subfield code="0">(DE-588)4772570-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Strömungsmechanik</subfield><subfield code="0">(DE-588)4077970-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gitter-Boltzmann-Methode</subfield><subfield code="0">(DE-588)4772570-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shu, Chang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="710" ind1="2" ind2=" "><subfield code="a">World Scientific (Firm)</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575395</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028530578</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575395</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575395</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043106387 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:41:57Z |
institution | BVB |
isbn | 9789814508292 9789814508308 9814508306 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028530578 |
oclc_num | 844311044 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (xiii, 404 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2013 |
publishDateSearch | 2013 |
publishDateSort | 2013 |
publisher | World Scientific Pub. Co. |
record_format | marc |
series2 | Advances in computational fluid dynamics |
spelling | Guo, Zhaoli Verfasser aut Lattice Boltzmann method and its applications in engineering Zhaoli Guo, Chang Shu Singapore World Scientific Pub. Co. ©2013 1 Online-Ressource (xiii, 404 pages) txt rdacontent c rdamedia cr rdacarrier Advances in computational fluid dynamics v. 3 Includes bibliographical references (pages 373-396) and index Ch. 1. Introduction. 1.1. Description of fluid system at different scales. 1.2. Numerical methods for fluid flows. 1.3. History of LBE. 1.4. Basic models of LBE. 1.5. Summary -- ch. 2. Initial and boundary conditions for lattice Boltzmann method. 2.1. Initial conditions. 2.2. Boundary conditions for flat walls. 2.3. Boundary conditions for curved walls. 2.4. Pressure boundary conditions. 2.5. Summary -- ch. 3. Improved lattice Boltzmann models. 3.1. Incompressible models. 3.2. Forcing schemes with reduced discrete lattice effects. 3.3. LBE with nonuniform grids. 3.4. Accelerated LBE methods for steady flows. 3.5. Summary -- ch. 4. Sample applications of LBE for isothermal flows. 4.1. Algorithm structure of LBE. 4.2. Lid-driven cavity flow. 4.3. Flow around a fixed circular cylinder. 4.4. Flow around an oscillating circular cylinder with a fixed downstream one. 4.5. Summary -- - ch. 5. LBE for low speed flows with heat transfer. 5.1. Multi-speed models. 5.2. MS-LBE models based on Boltzmann equation. 5.3. Off-lattice LBE models. 5.4. MS-LBE models with adjustable Prandtl number. 5.5. DDF-LBE models without viscous dissipation and compression work. 5.6. DDF-LBE with viscous dissipation and compression work -- internal energy formulation. 5.7. DDF-LBE with viscous dissipation and compression work -- total energy formulation. 5.8. Hybrid LBE models. 5.9. Summary -- - ch. 6. LBE for compressible flows. 6.1. Limitation of conventional LBE models for compressible flows. 6.2. Conventional equilibrium function-based LBE models for compressible flows. 6.3. Circular function-based LBE models for compressible flows. 6.4. Delta function-based LBE models for compressible flows. 6.5. Direct derivation of equilibrium distribution functions from conservation of moments. 6.6. Solution of discrete velocity Boltzmann equation. 6.7. Lattice Boltzmann flux solver for solution of Euler equations. 6.8. Some sample applications. 6.9. Summary -- ch. 7. LBE for multiphase and multi-component flows. 7.1. Color models. 7.2. Pseudo-potential models. 7.3. Free energy models. 7.4. LBE models based on kinetic theories. 7.5. Summary -- ch. 8. LBE for microscale gas flows. 8.1. Introduction. 8.2. Fundamental issues in LBE for micro gaseous flows. 8.3. LBE for slip flows. 8.4. LBE for transition flows. 8.5. LBE for microscale binary mixture flows. 8.6. Summary -- - ch. 9. Other applications of LBE. 9.1. Applications of LBE for particulate flows. 9.2. Applications of LBE for flows in porous media. 9.3. Applications of LBE for turbulent flows. 9.4. Immersed boundary-lattice Boltzmann method and its applications. 9.5. Summary Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions. With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method SCIENCE / Nanoscience bisacsh Lattice Boltzmann methods Strömungsmechanik (DE-588)4077970-1 gnd rswk-swf Gitter-Boltzmann-Methode (DE-588)4772570-9 gnd rswk-swf Strömungsmechanik (DE-588)4077970-1 s Gitter-Boltzmann-Methode (DE-588)4772570-9 s 1\p DE-604 Shu, Chang Sonstige oth World Scientific (Firm) Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575395 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Guo, Zhaoli Lattice Boltzmann method and its applications in engineering SCIENCE / Nanoscience bisacsh Lattice Boltzmann methods Strömungsmechanik (DE-588)4077970-1 gnd Gitter-Boltzmann-Methode (DE-588)4772570-9 gnd |
subject_GND | (DE-588)4077970-1 (DE-588)4772570-9 |
title | Lattice Boltzmann method and its applications in engineering |
title_auth | Lattice Boltzmann method and its applications in engineering |
title_exact_search | Lattice Boltzmann method and its applications in engineering |
title_full | Lattice Boltzmann method and its applications in engineering Zhaoli Guo, Chang Shu |
title_fullStr | Lattice Boltzmann method and its applications in engineering Zhaoli Guo, Chang Shu |
title_full_unstemmed | Lattice Boltzmann method and its applications in engineering Zhaoli Guo, Chang Shu |
title_short | Lattice Boltzmann method and its applications in engineering |
title_sort | lattice boltzmann method and its applications in engineering |
topic | SCIENCE / Nanoscience bisacsh Lattice Boltzmann methods Strömungsmechanik (DE-588)4077970-1 gnd Gitter-Boltzmann-Methode (DE-588)4772570-9 gnd |
topic_facet | SCIENCE / Nanoscience Lattice Boltzmann methods Strömungsmechanik Gitter-Boltzmann-Methode |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=575395 |
work_keys_str_mv | AT guozhaoli latticeboltzmannmethodanditsapplicationsinengineering AT shuchang latticeboltzmannmethodanditsapplicationsinengineering AT worldscientificfirm latticeboltzmannmethodanditsapplicationsinengineering |