Modules over discrete valuation domains
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin
De Gruyter
©2008
|
Schriftenreihe: | De Gruyter expositions in mathematics
43 |
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1047 Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043095649 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2008 xx o|||| 00||| eng d | ||
020 | |a 3110200538 |9 3-11-020053-8 | ||
020 | |a 3110205785 |c electronic bk. |9 3-11-020578-5 | ||
020 | |a 9783110200539 |9 978-3-11-020053-9 | ||
020 | |a 9783110205787 |c electronic bk. |9 978-3-11-020578-7 | ||
035 | |a (OCoLC)471132559 | ||
035 | |a (DE-599)BVBBV043095649 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 512/.42 |2 22 | |
100 | 1 | |a Krylov, Piotr A. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Modules over discrete valuation domains |c by Piotr A. Krylov and Askar A. Tuganbaev |
264 | 1 | |a Berlin |b De Gruyter |c ©2008 | |
300 | |a 1 Online-Ressource (ix, 357 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a De Gruyter expositions in mathematics |v 43 | |
500 | |a Includes bibliographical references and index | ||
500 | |a Frontmatter; Contents; Chapter 1 Preliminaries; Chapter 2 Basic facts; Chapter 3 Endomorphism rings of divisible and complete modules; Chapter 4 Representation of rings by endomorphism rings; Chapter 5 Torsion-free modules; Chapter 6 Mixed modules; Chapter 7 Determinity of modules by their endomorphism rings; Chapter 8 Modules with many endomorphisms or automorphisms; Backmatter | ||
500 | |a This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra | ||
650 | 7 | |a MATHEMATICS / Algebra / Intermediate |2 bisacsh | |
650 | 7 | |a Commutative algebra |2 fast | |
650 | 7 | |a Modules (Algebra) |2 fast | |
650 | 7 | |a Diskreter Bewertungsring |2 swd | |
650 | 7 | |a Modultheorie |2 swd | |
650 | 4 | |a Commutative algebra | |
650 | 4 | |a Modules (Algebra) | |
650 | 0 | 7 | |a Diskreter Bewertungsring |0 (DE-588)4483625-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modultheorie |0 (DE-588)4170336-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Modultheorie |0 (DE-588)4170336-4 |D s |
689 | 0 | 1 | |a Diskreter Bewertungsring |0 (DE-588)4483625-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Tuganbaev, Askar A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247538 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028519841 | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247538 |l DE-1046 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247538 |l DE-1047 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1819295402753523712 |
---|---|
any_adam_object | |
author | Krylov, Piotr A. |
author_facet | Krylov, Piotr A. |
author_role | aut |
author_sort | Krylov, Piotr A. |
author_variant | p a k pa pak |
building | Verbundindex |
bvnumber | BV043095649 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)471132559 (DE-599)BVBBV043095649 |
dewey-full | 512/.42 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512/.42 |
dewey-search | 512/.42 |
dewey-sort | 3512 242 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03071nam a2200565zcb4500</leader><controlfield tag="001">BV043095649</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2008 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110200538</subfield><subfield code="9">3-11-020053-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110205785</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">3-11-020578-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110200539</subfield><subfield code="9">978-3-11-020053-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110205787</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-3-11-020578-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)471132559</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043095649</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.42</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krylov, Piotr A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modules over discrete valuation domains</subfield><subfield code="c">by Piotr A. Krylov and Askar A. Tuganbaev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">©2008</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (ix, 357 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">De Gruyter expositions in mathematics</subfield><subfield code="v">43</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Frontmatter; Contents; Chapter 1 Preliminaries; Chapter 2 Basic facts; Chapter 3 Endomorphism rings of divisible and complete modules; Chapter 4 Representation of rings by endomorphism rings; Chapter 5 Torsion-free modules; Chapter 6 Mixed modules; Chapter 7 Determinity of modules by their endomorphism rings; Chapter 8 Modules with many endomorphisms or automorphisms; Backmatter</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Commutative algebra</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modules (Algebra)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Diskreter Bewertungsring</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Modules (Algebra)</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diskreter Bewertungsring</subfield><subfield code="0">(DE-588)4483625-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modultheorie</subfield><subfield code="0">(DE-588)4170336-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Diskreter Bewertungsring</subfield><subfield code="0">(DE-588)4483625-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuganbaev, Askar A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247538</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028519841</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247538</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247538</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043095649 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:41:39Z |
institution | BVB |
isbn | 3110200538 3110205785 9783110200539 9783110205787 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028519841 |
oclc_num | 471132559 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (ix, 357 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2008 |
publishDateSearch | 2008 |
publishDateSort | 2008 |
publisher | De Gruyter |
record_format | marc |
series2 | De Gruyter expositions in mathematics |
spelling | Krylov, Piotr A. Verfasser aut Modules over discrete valuation domains by Piotr A. Krylov and Askar A. Tuganbaev Berlin De Gruyter ©2008 1 Online-Ressource (ix, 357 pages) txt rdacontent c rdamedia cr rdacarrier De Gruyter expositions in mathematics 43 Includes bibliographical references and index Frontmatter; Contents; Chapter 1 Preliminaries; Chapter 2 Basic facts; Chapter 3 Endomorphism rings of divisible and complete modules; Chapter 4 Representation of rings by endomorphism rings; Chapter 5 Torsion-free modules; Chapter 6 Mixed modules; Chapter 7 Determinity of modules by their endomorphism rings; Chapter 8 Modules with many endomorphisms or automorphisms; Backmatter This book provides the first systematic treatment of modules over discrete valuation domains which plays an important role in various areas of algebra, especially in commutative algebra. Many important results representing the state of the art are presented in the text which is supplemented by exercises and interesting open problems. An important contribution to commutative algebra MATHEMATICS / Algebra / Intermediate bisacsh Commutative algebra fast Modules (Algebra) fast Diskreter Bewertungsring swd Modultheorie swd Commutative algebra Modules (Algebra) Diskreter Bewertungsring (DE-588)4483625-9 gnd rswk-swf Modultheorie (DE-588)4170336-4 gnd rswk-swf Modultheorie (DE-588)4170336-4 s Diskreter Bewertungsring (DE-588)4483625-9 s 1\p DE-604 Tuganbaev, Askar A. Sonstige oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247538 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Krylov, Piotr A. Modules over discrete valuation domains MATHEMATICS / Algebra / Intermediate bisacsh Commutative algebra fast Modules (Algebra) fast Diskreter Bewertungsring swd Modultheorie swd Commutative algebra Modules (Algebra) Diskreter Bewertungsring (DE-588)4483625-9 gnd Modultheorie (DE-588)4170336-4 gnd |
subject_GND | (DE-588)4483625-9 (DE-588)4170336-4 |
title | Modules over discrete valuation domains |
title_auth | Modules over discrete valuation domains |
title_exact_search | Modules over discrete valuation domains |
title_full | Modules over discrete valuation domains by Piotr A. Krylov and Askar A. Tuganbaev |
title_fullStr | Modules over discrete valuation domains by Piotr A. Krylov and Askar A. Tuganbaev |
title_full_unstemmed | Modules over discrete valuation domains by Piotr A. Krylov and Askar A. Tuganbaev |
title_short | Modules over discrete valuation domains |
title_sort | modules over discrete valuation domains |
topic | MATHEMATICS / Algebra / Intermediate bisacsh Commutative algebra fast Modules (Algebra) fast Diskreter Bewertungsring swd Modultheorie swd Commutative algebra Modules (Algebra) Diskreter Bewertungsring (DE-588)4483625-9 gnd Modultheorie (DE-588)4170336-4 gnd |
topic_facet | MATHEMATICS / Algebra / Intermediate Commutative algebra Modules (Algebra) Diskreter Bewertungsring Modultheorie |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=247538 |
work_keys_str_mv | AT krylovpiotra modulesoverdiscretevaluationdomains AT tuganbaevaskara modulesoverdiscretevaluationdomains |