Knowledge-based neurocomputing

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Cambridge, Mass. MIT Press ©2000
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043088748
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2000 xx o|||| 00||| eng d
020 |a 0262032740  |9 0-262-03274-0 
020 |a 0585355010  |9 0-585-35501-0 
020 |a 9780262032742  |9 978-0-262-03274-2 
020 |a 9780585355016  |9 978-0-585-35501-6 
035 |a (OCoLC)47011985 
035 |a (DE-599)BVBBV043088748 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 006.3/2  |2 21 
245 1 0 |a Knowledge-based neurocomputing  |c edited by Ian Cloete and Jacek M. Zurada 
264 1 |a Cambridge, Mass.  |b MIT Press  |c ©2000 
300 |a 1 Online-Ressource (xiv, 486 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Includes bibliographical references and index 
500 |a Knowledge-based neurocomputing : past, present, and future -- - Architectures and techniques for knowledge-based neurocomputing -- - Symbolic knowledge representation in recurrent neural networks : insights from theoretical models of computation -- - Tutorial on neurocomputing of structures -- - Structural learning and rule discovery -- - VL₁ANN : transformation of rules to artificial neural networks -- - Integration of heterogeneous sources of partial domain knowledge -- - Approximation of differential equations using neural networks -- - Fynesse : a hybrid architecture for self-learning control -- - Data mining techniques for designing neural network time series predictors -- - Extraction of decision trees from artificial networks -- - Extraction of linguistic rules from data via neural networks and fuzzy approximation -- - Neural knowledge processing in expert systems 
500 |a Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network. The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system. Contributors : C. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada 
650 7 |a COMPUTERS / Neural Networks  |2 bisacsh 
650 7 |a Expert systems (Computer science)  |2 fast 
650 7 |a Neural computers  |2 fast 
650 4 |a Neural computers 
650 4 |a Expert systems (Computer science) 
700 1 |a Cloete, Ian  |e Sonstige  |4 oth 
700 1 |a Zurada, Jacek M.  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=49735  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028512940 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=49735  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=49735  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295393955971074
any_adam_object
building Verbundindex
bvnumber BV043088748
collection ZDB-4-EBA
ctrlnum (OCoLC)47011985
(DE-599)BVBBV043088748
dewey-full 006.3/2
dewey-hundreds 000 - Computer science, information, general works
dewey-ones 006 - Special computer methods
dewey-raw 006.3/2
dewey-search 006.3/2
dewey-sort 16.3 12
dewey-tens 000 - Computer science, information, general works
discipline Informatik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04104nam a2200457zc 4500</leader><controlfield tag="001">BV043088748</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2000 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0262032740</subfield><subfield code="9">0-262-03274-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0585355010</subfield><subfield code="9">0-585-35501-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780262032742</subfield><subfield code="9">978-0-262-03274-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780585355016</subfield><subfield code="9">978-0-585-35501-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)47011985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043088748</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">006.3/2</subfield><subfield code="2">21</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knowledge-based neurocomputing</subfield><subfield code="c">edited by Ian Cloete and Jacek M. Zurada</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cambridge, Mass.</subfield><subfield code="b">MIT Press</subfield><subfield code="c">©2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiv, 486 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Knowledge-based neurocomputing : past, present, and future -- - Architectures and techniques for knowledge-based neurocomputing -- - Symbolic knowledge representation in recurrent neural networks : insights from theoretical models of computation -- - Tutorial on neurocomputing of structures -- - Structural learning and rule discovery -- - VL₁ANN : transformation of rules to artificial neural networks -- - Integration of heterogeneous sources of partial domain knowledge -- - Approximation of differential equations using neural networks -- - Fynesse : a hybrid architecture for self-learning control -- - Data mining techniques for designing neural network time series predictors -- - Extraction of decision trees from artificial networks -- - Extraction of linguistic rules from data via neural networks and fuzzy approximation -- - Neural knowledge processing in expert systems</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network. The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system. Contributors : C. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">COMPUTERS / Neural Networks</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Expert systems (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural computers</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural computers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Expert systems (Computer science)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cloete, Ian</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zurada, Jacek M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=49735</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028512940</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=49735</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=49735</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043088748
illustrated Not Illustrated
indexdate 2024-12-24T04:41:22Z
institution BVB
isbn 0262032740
0585355010
9780262032742
9780585355016
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028512940
oclc_num 47011985
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xiv, 486 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2000
publishDateSearch 2000
publishDateSort 2000
publisher MIT Press
record_format marc
spelling Knowledge-based neurocomputing edited by Ian Cloete and Jacek M. Zurada
Cambridge, Mass. MIT Press ©2000
1 Online-Ressource (xiv, 486 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Includes bibliographical references and index
Knowledge-based neurocomputing : past, present, and future -- - Architectures and techniques for knowledge-based neurocomputing -- - Symbolic knowledge representation in recurrent neural networks : insights from theoretical models of computation -- - Tutorial on neurocomputing of structures -- - Structural learning and rule discovery -- - VL₁ANN : transformation of rules to artificial neural networks -- - Integration of heterogeneous sources of partial domain knowledge -- - Approximation of differential equations using neural networks -- - Fynesse : a hybrid architecture for self-learning control -- - Data mining techniques for designing neural network time series predictors -- - Extraction of decision trees from artificial networks -- - Extraction of linguistic rules from data via neural networks and fuzzy approximation -- - Neural knowledge processing in expert systems
Neurocomputing methods are loosely based on a model of the brain as a network of simple interconnected processing elements corresponding to neurons. These methods derive their power from the collective processing of artificial neurons, the chief advantage being that such systems can learn and adapt to a changing environment. In knowledge-based neurocomputing, the emphasis is on the use and representation of knowledge about an application. Explicit modeling of the knowledge represented by such a system remains a major research topic. The reason is that humans find it difficult to interpret the numeric representation of a neural network. The key assumption of knowledge-based neurocomputing is that knowledge is obtainable from, or can be represented by, a neurocomputing system in a form that humans can understand. That is, the knowledge embedded in the neurocomputing system can also be represented in a symbolic or well-structured form, such as Boolean functions, automata, rules, or other familiar ways. The focus of knowledge-based computing is on methods to encode prior knowledge and to extract, refine, and revise knowledge within a neurocomputing system. Contributors : C. Aldrich, J. Cervenka, I. Cloete, R.A. Cozzio, R. Drossu, J. Fletcher, C.L. Giles, F.S. Gouws, M. Hilario, M. Ishikawa, A. Lozowski, Z. Obradovic, C.W. Omlin, M. Riedmiller, P. Romero, G.P.J. Schmitz, J. Sima, A. Sperduti, M. Spott, J. Weisbrod, J.M. Zurada
COMPUTERS / Neural Networks bisacsh
Expert systems (Computer science) fast
Neural computers fast
Neural computers
Expert systems (Computer science)
Cloete, Ian Sonstige oth
Zurada, Jacek M. Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=49735 Aggregator Volltext
spellingShingle Knowledge-based neurocomputing
COMPUTERS / Neural Networks bisacsh
Expert systems (Computer science) fast
Neural computers fast
Neural computers
Expert systems (Computer science)
title Knowledge-based neurocomputing
title_auth Knowledge-based neurocomputing
title_exact_search Knowledge-based neurocomputing
title_full Knowledge-based neurocomputing edited by Ian Cloete and Jacek M. Zurada
title_fullStr Knowledge-based neurocomputing edited by Ian Cloete and Jacek M. Zurada
title_full_unstemmed Knowledge-based neurocomputing edited by Ian Cloete and Jacek M. Zurada
title_short Knowledge-based neurocomputing
title_sort knowledge based neurocomputing
topic COMPUTERS / Neural Networks bisacsh
Expert systems (Computer science) fast
Neural computers fast
Neural computers
Expert systems (Computer science)
topic_facet COMPUTERS / Neural Networks
Expert systems (Computer science)
Neural computers
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=49735
work_keys_str_mv AT cloeteian knowledgebasedneurocomputing
AT zuradajacekm knowledgebasedneurocomputing