The ergodic theory of lattice subgroups

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Gorodnik, Alexander (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton Princeton University Press 2010
Schriftenreihe:Annals of mathematics studies no. 172
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043087932
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2010 xx o|||| 00||| eng d
020 |a 0691141851  |c pbk.  |9 0-691-14185-1 
020 |a 1400831067  |c electronic bk.  |9 1-4008-3106-7 
020 |a 9780691141855  |c pbk.  |9 978-0-691-14185-5 
020 |a 9781400831067  |c electronic bk.  |9 978-1-4008-3106-7 
035 |a (OCoLC)507428541 
035 |a (DE-599)BVBBV043087932 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 515/.48  |2 22 
100 1 |a Gorodnik, Alexander  |e Verfasser  |4 aut 
245 1 0 |a The ergodic theory of lattice subgroups  |c Alexander Gorodnik, Amos Nevo 
264 1 |a Princeton  |b Princeton University Press  |c 2010 
300 |a 1 Online-Ressource (xiii, 120 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Annals of mathematics studies  |v no. 172 
500 |a Includes bibliographical references (pages 117-120) and index 
500 |a Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index 
500 |a The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the 
650 7 |a MATHEMATICS / Calculus  |2 bisacsh 
650 7 |a MATHEMATICS / Mathematical Analysis  |2 bisacsh 
650 7 |a MATHEMATICS / Group Theory  |2 bisacsh 
650 7 |a Dynamics  |2 fast 
650 7 |a Ergodic theory  |2 fast 
650 7 |a Harmonic analysis  |2 fast 
650 7 |a Lattice theory  |2 fast 
650 7 |a Lie groups  |2 fast 
650 4 |a Ergodic theory 
650 4 |a Lie groups 
650 4 |a Lattice theory 
650 4 |a Harmonic analysis 
650 4 |a Dynamics 
700 1 |a Nevo, Amos  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 0-691-14184-3 
776 0 8 |i Erscheint auch als  |n Druckausgabe  |z 978-0-691-14184-8 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028512124 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295384747376644
any_adam_object
author Gorodnik, Alexander
author_facet Gorodnik, Alexander
author_role aut
author_sort Gorodnik, Alexander
author_variant a g ag
building Verbundindex
bvnumber BV043087932
collection ZDB-4-EBA
ctrlnum (OCoLC)507428541
(DE-599)BVBBV043087932
dewey-full 515/.48
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515/.48
dewey-search 515/.48
dewey-sort 3515 248
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03369nam a2200589zcb4500</leader><controlfield tag="001">BV043087932</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2010 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691141851</subfield><subfield code="c">pbk.</subfield><subfield code="9">0-691-14185-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400831067</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-4008-3106-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691141855</subfield><subfield code="c">pbk.</subfield><subfield code="9">978-0-691-14185-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400831067</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-4008-3106-7</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)507428541</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043087932</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515/.48</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gorodnik, Alexander</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The ergodic theory of lattice subgroups</subfield><subfield code="c">Alexander Gorodnik, Amos Nevo</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2010</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xiii, 120 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Annals of mathematics studies</subfield><subfield code="v">no. 172</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 117-120) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Dynamics</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Ergodic theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Harmonic analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lattice theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie groups</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ergodic theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lattice theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Harmonic analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamics</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nevo, Amos</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">0-691-14184-3</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druckausgabe</subfield><subfield code="z">978-0-691-14184-8</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=295569</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028512124</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=295569</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=295569</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043087932
illustrated Not Illustrated
indexdate 2024-12-24T04:41:20Z
institution BVB
isbn 0691141851
1400831067
9780691141855
9781400831067
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028512124
oclc_num 507428541
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xiii, 120 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2010
publishDateSearch 2010
publishDateSort 2010
publisher Princeton University Press
record_format marc
series2 Annals of mathematics studies
spelling Gorodnik, Alexander Verfasser aut
The ergodic theory of lattice subgroups Alexander Gorodnik, Amos Nevo
Princeton Princeton University Press 2010
1 Online-Ressource (xiii, 120 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Annals of mathematics studies no. 172
Includes bibliographical references (pages 117-120) and index
Cover; Title; Copyright; Contents; Preface; Chapter 1. Main results: Semisimple Lie groups case; Chapter 2. Examples and applications; Chapter 3. Definitions, preliminaries, and basic tools; Chapter 4. Main results and an overview of the proofs; Chapter 5. Proof of ergodic theorems for S-algebraic groups; Chapter 6. Proof of ergodic theorems for lattice subgroups; Chapter 7. Volume estimates and volume regularity; Chapter 8. Comments and complements; Bibliography; Index
The results established in this book constitute a new departure in ergodic theory and a significant expansion of its scope. Traditional ergodic theorems focused on amenable groups, and relied on the existence of an asymptotically invariant sequence in the group, the resulting maximal inequalities based on covering arguments, and the transference principle. Here, Alexander Gorodnik and Amos Nevo develop a systematic general approach to the proof of ergodic theorems for a large class of non-amenable locally compact groups and their lattice subgroups. Simple general conditions on the spectral the
MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
MATHEMATICS / Group Theory bisacsh
Dynamics fast
Ergodic theory fast
Harmonic analysis fast
Lattice theory fast
Lie groups fast
Ergodic theory
Lie groups
Lattice theory
Harmonic analysis
Dynamics
Nevo, Amos Sonstige oth
Erscheint auch als Druckausgabe 0-691-14184-3
Erscheint auch als Druckausgabe 978-0-691-14184-8
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569 Aggregator Volltext
spellingShingle Gorodnik, Alexander
The ergodic theory of lattice subgroups
MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
MATHEMATICS / Group Theory bisacsh
Dynamics fast
Ergodic theory fast
Harmonic analysis fast
Lattice theory fast
Lie groups fast
Ergodic theory
Lie groups
Lattice theory
Harmonic analysis
Dynamics
title The ergodic theory of lattice subgroups
title_auth The ergodic theory of lattice subgroups
title_exact_search The ergodic theory of lattice subgroups
title_full The ergodic theory of lattice subgroups Alexander Gorodnik, Amos Nevo
title_fullStr The ergodic theory of lattice subgroups Alexander Gorodnik, Amos Nevo
title_full_unstemmed The ergodic theory of lattice subgroups Alexander Gorodnik, Amos Nevo
title_short The ergodic theory of lattice subgroups
title_sort the ergodic theory of lattice subgroups
topic MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
MATHEMATICS / Group Theory bisacsh
Dynamics fast
Ergodic theory fast
Harmonic analysis fast
Lattice theory fast
Lie groups fast
Ergodic theory
Lie groups
Lattice theory
Harmonic analysis
Dynamics
topic_facet MATHEMATICS / Calculus
MATHEMATICS / Mathematical Analysis
MATHEMATICS / Group Theory
Dynamics
Ergodic theory
Harmonic analysis
Lattice theory
Lie groups
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=295569
work_keys_str_mv AT gorodnikalexander theergodictheoryoflatticesubgroups
AT nevoamos theergodictheoryoflatticesubgroups