Lectures on infinite-dimensional Lie algebra

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Wakimoto, Minoru (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: River Edge, N.J. World Scientific ©2001
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043080426
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2001 xx o|||| 00||| eng d
020 |a 128195635X  |9 1-281-95635-X 
020 |a 9781281956354  |9 978-1-281-95635-4 
020 |a 9789812810700  |c electronic bk.  |9 978-981-281-070-0 
020 |a 9810241283  |9 981-02-4128-3 
020 |a 9812810706  |c electronic bk.  |9 981-281-070-6 
035 |a (OCoLC)269468827 
035 |a (DE-599)BVBBV043080426 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 512/.482  |2 22 
084 |a SK 340  |0 (DE-625)143232:  |2 rvk 
100 1 |a Wakimoto, Minoru  |e Verfasser  |4 aut 
245 1 0 |a Lectures on infinite-dimensional Lie algebra  |c Minoru Wakimoto 
246 1 3 |a Infinite-dimensional Lie algebra 
264 1 |a River Edge, N.J.  |b World Scientific  |c ©2001 
300 |a 1 Online-Ressource (x, 444 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Includes bibliographical references (pages 429-440) and index 
500 |a 1. Preliminaries on affine Lie algebras. 1.1. Affine Lie algebras. 1.2. Extended affine Weyl group. 1.3. Some formulas for finite-dimensional simple Lie algebras -- 2. Characters of integrable representations. 2.1. Weyl-Kac character formula. 2.2. Specialized characters. 2.3. Product expression of characters. 2.4. Modular transformation -- 3. Principal admissible weights. 3.1. Admissible weights. 3.2. Principal admissible weights. 3.3. Characters of principal admissible representations. 3.4. Parametrization of principal admissible weights. 3.5. Modular transformation -- 4. Residue of principal admissible characters. 4.1. Non-degenerate principal admissible weights. 4.2. Modular transformation of residue. 4.3. Fusion coefficients -- 5. Characters of affine orbifolds. 5.1. Characters of finite groups. 5.2. Fusion datum. 5.3. Characters of affine orbifolds -- 6. Operator calculus. 6.1. Operator products. 6.2. Boson-fermion correspondence -- 7. Branching functions. 7.1. Virasoro modules. 7.2. Virasoro modules of central charge-[symbol]. 7.3. Branching functions. 7.4. Tensor product decomposition -- 8. W-algebra. 8.1. Free fermionic fields [symbol](z) and [symbol](z). 8.2. Free fermionic fields [symbol](z) and [symbol](z). 8.3. Ghost field associated to a simple Lie algebra. 8.4. BRST complex. 8.5. Euler-Poincaré characteristics -- 9. Vertex representations for affine Lie algebras. 9.1. Simple examples of vertex operators. 9.2. Basic representations of [symbol](2, C). 9.3. Construction of basic representation -- 10. Soliton equations. 10.1. Hirota bilinear differential operators. 10.2. KdV equation and Hirota bilinear differential equations. 10.3. Hirota equations associated to the basic representation. 10.4. Non-linear Schrödinger equations 
500 |a The representation theory of affine lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three valuable works on it, written by Victor G Kac. This volume begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations 
650 4 |a Algèbres de Lie de dimension infinie 
650 4 |a Lie, Algèbres de 
650 7 |a MATHEMATICS / Algebra / Intermediate  |2 bisacsh 
650 7 |a Infinite dimensional Lie algebras  |2 fast 
650 7 |a Lie algebras  |2 fast 
650 7 |a Algèbres de Lie de dimension infinie  |2 rvm 
650 7 |a Lie, Algèbres de  |2 rvm 
650 4 |a Infinite dimensional Lie algebras 
650 4 |a Lie algebras 
650 0 7 |a Lie-Algebra  |0 (DE-588)4130355-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Unendlichdimensionale Lie-Algebra  |0 (DE-588)4434344-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Lie-Algebra  |0 (DE-588)4130355-6  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Unendlichdimensionale Lie-Algebra  |0 (DE-588)4434344-9  |D s 
689 1 |8 2\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe, Paperback  |z 981-02-4129-1 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235930  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028504618 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235930  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235930  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295371117985793
any_adam_object
author Wakimoto, Minoru
author_facet Wakimoto, Minoru
author_role aut
author_sort Wakimoto, Minoru
author_variant m w mw
building Verbundindex
bvnumber BV043080426
classification_rvk SK 340
collection ZDB-4-EBA
ctrlnum (OCoLC)269468827
(DE-599)BVBBV043080426
dewey-full 512/.482
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512/.482
dewey-search 512/.482
dewey-sort 3512 3482
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05180nam a2200637zc 4500</leader><controlfield tag="001">BV043080426</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2001 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">128195635X</subfield><subfield code="9">1-281-95635-X</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781281956354</subfield><subfield code="9">978-1-281-95635-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789812810700</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-281-070-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9810241283</subfield><subfield code="9">981-02-4128-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9812810706</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-281-070-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)269468827</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043080426</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512/.482</subfield><subfield code="2">22</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 340</subfield><subfield code="0">(DE-625)143232:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wakimoto, Minoru</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on infinite-dimensional Lie algebra</subfield><subfield code="c">Minoru Wakimoto</subfield></datafield><datafield tag="246" ind1="1" ind2="3"><subfield code="a">Infinite-dimensional Lie algebra</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">River Edge, N.J.</subfield><subfield code="b">World Scientific</subfield><subfield code="c">©2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (x, 444 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (pages 429-440) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Preliminaries on affine Lie algebras. 1.1. Affine Lie algebras. 1.2. Extended affine Weyl group. 1.3. Some formulas for finite-dimensional simple Lie algebras -- 2. Characters of integrable representations. 2.1. Weyl-Kac character formula. 2.2. Specialized characters. 2.3. Product expression of characters. 2.4. Modular transformation -- 3. Principal admissible weights. 3.1. Admissible weights. 3.2. Principal admissible weights. 3.3. Characters of principal admissible representations. 3.4. Parametrization of principal admissible weights. 3.5. Modular transformation -- 4. Residue of principal admissible characters. 4.1. Non-degenerate principal admissible weights. 4.2. Modular transformation of residue. 4.3. Fusion coefficients -- 5. Characters of affine orbifolds. 5.1. Characters of finite groups. 5.2. Fusion datum. 5.3. Characters of affine orbifolds -- 6. Operator calculus. 6.1. Operator products. 6.2. Boson-fermion correspondence -- 7. Branching functions. 7.1. Virasoro modules. 7.2. Virasoro modules of central charge-[symbol]. 7.3. Branching functions. 7.4. Tensor product decomposition -- 8. W-algebra. 8.1. Free fermionic fields [symbol](z) and [symbol](z). 8.2. Free fermionic fields [symbol](z) and [symbol](z). 8.3. Ghost field associated to a simple Lie algebra. 8.4. BRST complex. 8.5. Euler-Poincaré characteristics -- 9. Vertex representations for affine Lie algebras. 9.1. Simple examples of vertex operators. 9.2. Basic representations of [symbol](2, C). 9.3. Construction of basic representation -- 10. Soliton equations. 10.1. Hirota bilinear differential operators. 10.2. KdV equation and Hirota bilinear differential equations. 10.3. Hirota equations associated to the basic representation. 10.4. Non-linear Schrödinger equations</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The representation theory of affine lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three valuable works on it, written by Victor G Kac. This volume begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algèbres de Lie de dimension infinie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie, Algèbres de</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Algebra / Intermediate</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Infinite dimensional Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie algebras</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Algèbres de Lie de dimension infinie</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Lie, Algèbres de</subfield><subfield code="2">rvm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Infinite dimensional Lie algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Lie algebras</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unendlichdimensionale Lie-Algebra</subfield><subfield code="0">(DE-588)4434344-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lie-Algebra</subfield><subfield code="0">(DE-588)4130355-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Unendlichdimensionale Lie-Algebra</subfield><subfield code="0">(DE-588)4434344-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe, Paperback</subfield><subfield code="z">981-02-4129-1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=235930</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028504618</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=235930</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=235930</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043080426
illustrated Not Illustrated
indexdate 2024-12-24T04:41:06Z
institution BVB
isbn 128195635X
9781281956354
9789812810700
9810241283
9812810706
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028504618
oclc_num 269468827
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (x, 444 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2001
publishDateSearch 2001
publishDateSort 2001
publisher World Scientific
record_format marc
spelling Wakimoto, Minoru Verfasser aut
Lectures on infinite-dimensional Lie algebra Minoru Wakimoto
Infinite-dimensional Lie algebra
River Edge, N.J. World Scientific ©2001
1 Online-Ressource (x, 444 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Includes bibliographical references (pages 429-440) and index
1. Preliminaries on affine Lie algebras. 1.1. Affine Lie algebras. 1.2. Extended affine Weyl group. 1.3. Some formulas for finite-dimensional simple Lie algebras -- 2. Characters of integrable representations. 2.1. Weyl-Kac character formula. 2.2. Specialized characters. 2.3. Product expression of characters. 2.4. Modular transformation -- 3. Principal admissible weights. 3.1. Admissible weights. 3.2. Principal admissible weights. 3.3. Characters of principal admissible representations. 3.4. Parametrization of principal admissible weights. 3.5. Modular transformation -- 4. Residue of principal admissible characters. 4.1. Non-degenerate principal admissible weights. 4.2. Modular transformation of residue. 4.3. Fusion coefficients -- 5. Characters of affine orbifolds. 5.1. Characters of finite groups. 5.2. Fusion datum. 5.3. Characters of affine orbifolds -- 6. Operator calculus. 6.1. Operator products. 6.2. Boson-fermion correspondence -- 7. Branching functions. 7.1. Virasoro modules. 7.2. Virasoro modules of central charge-[symbol]. 7.3. Branching functions. 7.4. Tensor product decomposition -- 8. W-algebra. 8.1. Free fermionic fields [symbol](z) and [symbol](z). 8.2. Free fermionic fields [symbol](z) and [symbol](z). 8.3. Ghost field associated to a simple Lie algebra. 8.4. BRST complex. 8.5. Euler-Poincaré characteristics -- 9. Vertex representations for affine Lie algebras. 9.1. Simple examples of vertex operators. 9.2. Basic representations of [symbol](2, C). 9.3. Construction of basic representation -- 10. Soliton equations. 10.1. Hirota bilinear differential operators. 10.2. KdV equation and Hirota bilinear differential equations. 10.3. Hirota equations associated to the basic representation. 10.4. Non-linear Schrödinger equations
The representation theory of affine lie algebras has been developed in close connection with various areas of mathematics and mathematical physics in the last two decades. There are three valuable works on it, written by Victor G Kac. This volume begins with a survey and review of the material treated in Kac's books. In particular, modular invariance and conformal invariance are explained in more detail. The book then goes further, dealing with some of the recent topics involving the representation theory of affine lie algebras. Since these topics are important not only in themselves but also in their application to some areas of mathematics and mathematical physics, the book expounds them with examples and detailed calculations
Algèbres de Lie de dimension infinie
Lie, Algèbres de
MATHEMATICS / Algebra / Intermediate bisacsh
Infinite dimensional Lie algebras fast
Lie algebras fast
Algèbres de Lie de dimension infinie rvm
Lie, Algèbres de rvm
Infinite dimensional Lie algebras
Lie algebras
Lie-Algebra (DE-588)4130355-6 gnd rswk-swf
Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd rswk-swf
Lie-Algebra (DE-588)4130355-6 s
1\p DE-604
Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 s
2\p DE-604
Erscheint auch als Druck-Ausgabe, Paperback 981-02-4129-1
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235930 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Wakimoto, Minoru
Lectures on infinite-dimensional Lie algebra
Algèbres de Lie de dimension infinie
Lie, Algèbres de
MATHEMATICS / Algebra / Intermediate bisacsh
Infinite dimensional Lie algebras fast
Lie algebras fast
Algèbres de Lie de dimension infinie rvm
Lie, Algèbres de rvm
Infinite dimensional Lie algebras
Lie algebras
Lie-Algebra (DE-588)4130355-6 gnd
Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd
subject_GND (DE-588)4130355-6
(DE-588)4434344-9
title Lectures on infinite-dimensional Lie algebra
title_alt Infinite-dimensional Lie algebra
title_auth Lectures on infinite-dimensional Lie algebra
title_exact_search Lectures on infinite-dimensional Lie algebra
title_full Lectures on infinite-dimensional Lie algebra Minoru Wakimoto
title_fullStr Lectures on infinite-dimensional Lie algebra Minoru Wakimoto
title_full_unstemmed Lectures on infinite-dimensional Lie algebra Minoru Wakimoto
title_short Lectures on infinite-dimensional Lie algebra
title_sort lectures on infinite dimensional lie algebra
topic Algèbres de Lie de dimension infinie
Lie, Algèbres de
MATHEMATICS / Algebra / Intermediate bisacsh
Infinite dimensional Lie algebras fast
Lie algebras fast
Algèbres de Lie de dimension infinie rvm
Lie, Algèbres de rvm
Infinite dimensional Lie algebras
Lie algebras
Lie-Algebra (DE-588)4130355-6 gnd
Unendlichdimensionale Lie-Algebra (DE-588)4434344-9 gnd
topic_facet Algèbres de Lie de dimension infinie
Lie, Algèbres de
MATHEMATICS / Algebra / Intermediate
Infinite dimensional Lie algebras
Lie algebras
Lie-Algebra
Unendlichdimensionale Lie-Algebra
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=235930
work_keys_str_mv AT wakimotominoru lecturesoninfinitedimensionalliealgebra
AT wakimotominoru infinitedimensionalliealgebra