Stochastic simulation optimization an optimal computing budget allocation

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Chen, Chun-hung (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Singapore World Scientific c2011
Schriftenreihe:System engineering and operations research vol. 1
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043077685
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151126s2011 xx o|||| 00||| eng d
020 |a 1628702303  |c electronic bk.  |9 1-62870-230-3 
020 |a 9781628702309  |c electronic bk.  |9 978-1-62870-230-9 
020 |a 9789814282642  |9 978-981-4282-64-2 
020 |a 9789814282659  |c electronic bk.  |9 978-981-4282-65-9 
020 |a 9814282642  |9 981-4282-64-2 
020 |a 9814282650  |c electronic bk.  |9 981-4282-65-0 
035 |a (OCoLC)742584181 
035 |a (DE-599)BVBBV043077685 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 620.001/171  |2 23 
100 1 |a Chen, Chun-hung  |e Verfasser  |4 aut 
245 1 0 |a Stochastic simulation optimization  |b an optimal computing budget allocation  |c Chun-Hung Chen, Loo Hay Lee 
264 1 |a Singapore  |b World Scientific  |c c2011 
300 |a 1 Online-Ressource (xviii, 227 p.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a System engineering and operations research  |v vol. 1 
500 |a Includes bibliographical references (p. 219-224) and index 
500 |a 1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure --  
500 |a  - 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks --  
500 |a  - 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works 
500 |a With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation 
650 7 |a TECHNOLOGY & ENGINEERING / Engineering (General)  |2 bisacsh 
650 7 |a TECHNOLOGY & ENGINEERING / Reference  |2 bisacsh 
650 7 |a Stochastische Optimierung  |2 swd 
650 7 |a Stochastische optimale Kontrolle  |2 swd 
650 4 |a Systems engineering  |x Simulation methods 
650 4 |a Stochastic processes 
650 4 |a Mathematical optimization 
650 0 7 |a Stochastische optimale Kontrolle  |0 (DE-588)4207850-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastische Optimierung  |0 (DE-588)4057625-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Stochastische Optimierung  |0 (DE-588)4057625-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Stochastische optimale Kontrolle  |0 (DE-588)4207850-7  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Lee, Loo Hay  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374808  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028501877 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374808  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374808  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295363633250304
any_adam_object
author Chen, Chun-hung
author_facet Chen, Chun-hung
author_role aut
author_sort Chen, Chun-hung
author_variant c h c chc
building Verbundindex
bvnumber BV043077685
collection ZDB-4-EBA
ctrlnum (OCoLC)742584181
(DE-599)BVBBV043077685
dewey-full 620.001/171
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 620 - Engineering and allied operations
dewey-raw 620.001/171
dewey-search 620.001/171
dewey-sort 3620.001 3171
dewey-tens 620 - Engineering and allied operations
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06180nam a2200637zcb4500</leader><controlfield tag="001">BV043077685</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2011 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1628702303</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">1-62870-230-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781628702309</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-1-62870-230-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814282642</subfield><subfield code="9">978-981-4282-64-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814282659</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4282-65-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814282642</subfield><subfield code="9">981-4282-64-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814282650</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4282-65-0</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)742584181</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043077685</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620.001/171</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Chun-hung</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stochastic simulation optimization</subfield><subfield code="b">an optimal computing budget allocation</subfield><subfield code="c">Chun-Hung Chen, Loo Hay Lee</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Singapore</subfield><subfield code="b">World Scientific</subfield><subfield code="c">c2011</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xviii, 227 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">System engineering and operations research</subfield><subfield code="v">vol. 1</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references (p. 219-224) and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY &amp; ENGINEERING / Engineering (General)</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">TECHNOLOGY &amp; ENGINEERING / Reference</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische Optimierung</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Stochastische optimale Kontrolle</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Systems engineering</subfield><subfield code="x">Simulation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische optimale Kontrolle</subfield><subfield code="0">(DE-588)4207850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Optimierung</subfield><subfield code="0">(DE-588)4057625-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Stochastische Optimierung</subfield><subfield code="0">(DE-588)4057625-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Stochastische optimale Kontrolle</subfield><subfield code="0">(DE-588)4207850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lee, Loo Hay</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=374808</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028501877</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=374808</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=374808</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043077685
illustrated Not Illustrated
indexdate 2024-12-24T04:41:02Z
institution BVB
isbn 1628702303
9781628702309
9789814282642
9789814282659
9814282642
9814282650
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028501877
oclc_num 742584181
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xviii, 227 p.)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2011
publishDateSearch 2011
publishDateSort 2011
publisher World Scientific
record_format marc
series2 System engineering and operations research
spelling Chen, Chun-hung Verfasser aut
Stochastic simulation optimization an optimal computing budget allocation Chun-Hung Chen, Loo Hay Lee
Singapore World Scientific c2011
1 Online-Ressource (xviii, 227 p.)
txt rdacontent
c rdamedia
cr rdacarrier
System engineering and operations research vol. 1
Includes bibliographical references (p. 219-224) and index
1. Introduction to stochastic simulation optimization. 1.1. Introduction. 1.2. Problem definition. 1.3. Classification. 1.4. Summary -- 2. Computing budget allocation. 2.1. Simulation precision versus computing budget. 2.2. Computing budget allocation for comparison of multiple designs. 2.3. Intuitive explanations of optimal computing budget allocation. 2.4. Computing budget allocation for large simulation optimization. 2.5. Roadmap -- 3. Selecting the best from a set of alternative designs. 3.1. A Bayesian framework for simulation output modeling. 3.2. Probability of correct selection. 3.3. Maximizing the probability of correct selection. 3.4. Minimizing the total simulation cost. 3.5. Non-equal simulation costs. 3.6. Minimizing opportunity cost. 3.7. OCBA derivation based on classical model -- 4. Numerical implementation and experiments. 4.1. Numerical testing. 4.2. Parameter setting and implementation of the OCBA procedure --
- 5. Selecting an optimal subset. 5.1. Introduction and problem statement. 5.2. Approximate asymptotically optimal allocation scheme. 5.3. Numerical experiments -- 6. Multi-objective optimal computing budget allocation. 6.1. Pareto optimality. 6.2. Multi-objective optimal computing budget allocation problem. 6.3. Asymptotic allocation rule. 6.4. A sequential allocation procedure. 6.5. Numerical results -- 7. Large-scale simulation and optimization. 7.1. A general framework of integration of OCBA with metaheuristics. 7.2. Problems with single objective. 7.3. Numerical experiments. 7.4. Multiple objectives. 7.5. Concluding remarks --
- 8. Generalized OCBA framework and other related methods. 8.1. Optimal computing budget allocation for selecting the best by utilizing regression analysis (OCBA-OSD). 8.2. Optimal computing budget allocation for extended cross-entropy method (OCBA-CE). 8.3. Optimal computing budget allocation for variance reduction in rare-event simulation. 8.4. Optimal data collection budget allocation (ODCBA) for Monte Carlo DEA. 8.5. Other related works
With the advance of new computing technology, simulation is becoming very popular for designing large, complex and stochastic engineering systems, since closed-form analytical solutions generally do not exist for such problems. However, the added flexibility of simulation often creates models that are computationally intractable. Moreover, to obtain a sound statistical estimate at a specified level of confidence, a large number of simulation runs (or replications) is usually required for each design alternative. If the number of design alternatives is large, the total simulation cost can be very expensive. Stochastic Simulation Optimization addresses the pertinent efficiency issue via smart allocation of computing resource in the simulation experiments for optimization, and aims to provide academic researchers and industrial practitioners with a comprehensive coverage of OCBA approach for stochastic simulation optimization. Starting with an intuitive explanation of computing budget allocation and a discussion of its impact on optimization performance, a series of OCBA approaches developed for various problems are then presented, from the selection of the best design to optimization with multiple objectives. Finally, this book discusses the potential extension of OCBA notion to different applications such as data envelopment analysis, experiments of design and rare-event simulation
TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh
TECHNOLOGY & ENGINEERING / Reference bisacsh
Stochastische Optimierung swd
Stochastische optimale Kontrolle swd
Systems engineering Simulation methods
Stochastic processes
Mathematical optimization
Stochastische optimale Kontrolle (DE-588)4207850-7 gnd rswk-swf
Stochastische Optimierung (DE-588)4057625-5 gnd rswk-swf
Stochastische Optimierung (DE-588)4057625-5 s
1\p DE-604
Stochastische optimale Kontrolle (DE-588)4207850-7 s
2\p DE-604
Lee, Loo Hay Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374808 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Chen, Chun-hung
Stochastic simulation optimization an optimal computing budget allocation
TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh
TECHNOLOGY & ENGINEERING / Reference bisacsh
Stochastische Optimierung swd
Stochastische optimale Kontrolle swd
Systems engineering Simulation methods
Stochastic processes
Mathematical optimization
Stochastische optimale Kontrolle (DE-588)4207850-7 gnd
Stochastische Optimierung (DE-588)4057625-5 gnd
subject_GND (DE-588)4207850-7
(DE-588)4057625-5
title Stochastic simulation optimization an optimal computing budget allocation
title_auth Stochastic simulation optimization an optimal computing budget allocation
title_exact_search Stochastic simulation optimization an optimal computing budget allocation
title_full Stochastic simulation optimization an optimal computing budget allocation Chun-Hung Chen, Loo Hay Lee
title_fullStr Stochastic simulation optimization an optimal computing budget allocation Chun-Hung Chen, Loo Hay Lee
title_full_unstemmed Stochastic simulation optimization an optimal computing budget allocation Chun-Hung Chen, Loo Hay Lee
title_short Stochastic simulation optimization
title_sort stochastic simulation optimization an optimal computing budget allocation
title_sub an optimal computing budget allocation
topic TECHNOLOGY & ENGINEERING / Engineering (General) bisacsh
TECHNOLOGY & ENGINEERING / Reference bisacsh
Stochastische Optimierung swd
Stochastische optimale Kontrolle swd
Systems engineering Simulation methods
Stochastic processes
Mathematical optimization
Stochastische optimale Kontrolle (DE-588)4207850-7 gnd
Stochastische Optimierung (DE-588)4057625-5 gnd
topic_facet TECHNOLOGY & ENGINEERING / Engineering (General)
TECHNOLOGY & ENGINEERING / Reference
Stochastische Optimierung
Stochastische optimale Kontrolle
Systems engineering Simulation methods
Stochastic processes
Mathematical optimization
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=374808
work_keys_str_mv AT chenchunhung stochasticsimulationoptimizationanoptimalcomputingbudgetallocation
AT leeloohay stochasticsimulationoptimizationanoptimalcomputingbudgetallocation