Hodge Theory (MN-49)

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton Princeton University Press 2014
Schriftenreihe:Mathematical notes (Princeton University Press) 49
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV043075534
003 DE-604
005 20190312
007 cr|uuu---uuuuu
008 151126s2014 xx o|||| 10||| eng d
020 |a 1306783666  |9 1-306-78366-6 
020 |a 1400851475  |9 1-4008-5147-5 
020 |a 9781306783668  |9 978-1-306-78366-8 
020 |a 9781400851478  |9 978-1-4008-5147-8 
035 |a (OCoLC)880057790 
035 |a (DE-599)BVBBV043075534 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 516.36  |2 22 
245 1 0 |a Hodge Theory (MN-49) 
264 1 |a Princeton  |b Princeton University Press  |c 2014 
300 |a 1 Online-Ressource (608 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematical notes (Princeton University Press)  |v 49 
500 |a 3.1.6 Cohomology Class of a Subvariety and Hodge Conjecture 
500 |a Cover; Title; Copyright; Contributors; Contributors; Contents; Preface; 1 Kähler Manifolds; 1.1 Complex Manifolds; 1.1.1 Definition and Examples; 1.1.2 Holomorphic Vector Bundles; 1.2 Differential Forms on Complex Manifolds; 1.2.1 Almost Complex Manifolds; 1.2.2 Tangent and Cotangent Space; 1.2.3 De Rham and Dolbeault Cohomologies; 1.3 Symplectic, Hermitian, and Kähler Structures; 1.3.1 Kähler Manifolds; 1.3.2 The Chern Class of a Holomorphic Line Bundle; 1.4 Harmonic Forms-Hodge Theorem; 1.4.1 Compact Real Manifolds; 1.4.2 The [del symbol] -Laplacian; 1.5 Cohomology of Compact Kähler Manifolds 
500 |a 1.5.1 The Kähler Identities1.5.2 The Hodge Decomposition Theorem; 1.5.3 Lefschetz Theorems and Hodge-Riemann Bilinear Relations; A Linear Algebra; A.1 Real and Complex Vector Spaces; A.2 The Weight Filtration of a Nilpotent Transformation; A.3 Representations of sl(2,C) and Lefschetz Theorems; A.4 Hodge Structures; B The Kähler Identities; B.1 Symplectic Linear Algebra; B.2 Compatible Inner Products; B.3 Symplectic Manifolds; B.4 The Kähler Identities; Bibliography; 2 The Algebraic de Rham Theorem; Introduction; Part I. Sheaf Cohomology, Hypercohomology, and the Projective Case; 2.1 Sheaves 
500 |a 2.1.1 The Étalé Space of a Presheaf2.1.2 Exact Sequences of Sheaves; 2.1.3 Resolutions; 2.2 Sheaf Cohomology; 2.2.1 Godement's Canonical Resolution; 2.2.2 Cohomology with Coefficients in a Sheaf; 2.2.3 Flasque Sheaves; 2.2.4 Cohomology Sheaves and Exact Functors; 2.2.5 Fine Sheaves; 2.2.6 Cohomology with Coefficients in a Fine Sheaf; 2.3 Coherent Sheaves and Serre's GAGA Principle; 2.4 The Hypercohomology of a Complex of Sheaves; 2.4.1 The Spectral Sequences of Hypercohomology; 2.4.2 Acyclic Resolutions; 2.5 The Analytic de Rham Theorem; 2.5.1 The Holomorphic Poincaré Lemma 
500 |a 2.5.2 The Analytic de Rham Theorem2.6 The Algebraic de Rham Theorem for a Projective Variety; Part II. Čech Cohomology and the Algebraic de Rham Theorem in General; 2.7 Čech Cohomology of a Sheaf; 2.7.1 Čech Cohomology of an Open Cover; 2.7.2 Relation Between Čech Cohomology and Sheaf Cohomology; 2.8 Čech Cohomology of a Complex of Sheaves; 2.8.1 The Relation Between Čech Cohomology and Hypercohomology; 2.9 Reduction to the Affine Case; 2.9.1 Proof that the General Case Implies the Affine Case; 2.9.2 Proof that the Affine Case Implies the General Case 
500 |a 2.10 The Algebraic de Rham Theorem for an Affine Variety2.10.1 The Hypercohomology of the Direct Image of a Sheaf of Smooth Forms; 2.10.2 The Hypercohomology of Rational and Meromorphic Forms; 2.10.3 Comparison of Meromorphic and Smooth Forms; Bibliography; 3 Mixed Hodge Structures; 3.1 Hodge Structure on a Smooth Compact Complex Variety; 3.1.1 Hodge Structure (HS); 3.1.2 Spectral Sequence of a Filtered Complex; 3.1.3 Hodge Structure on the Cohomology of Nonsingular Compact Complex Algebraic Varieties; 3.1.4 Lefschetz Decomposition and Polarized Hodge Structure; 3.1.5 Examples 
500 |a This book provides a comprehensive and up-to-date introduction to Hodge theory-one of the central and most vibrant areas of contemporary mathematics-from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students 
650 4 |a Manifolds (Mathematics) / Congresses 
650 4 |a Mathematics 
650 7 |a MATHEMATICS / Geometry / General  |2 bisacsh 
650 7 |a MATHEMATICS / Group Theory  |2 bisacsh 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Hodge theory  |2 fast 
650 4 |a Mathematik 
650 4 |a Hodge theory  |v Congresses 
650 4 |a Geometry, Algebraic  |v Congresses 
655 7 |0 (DE-588)1071861417  |a Konferenzschrift  |2 gnd-content 
700 1 |a Cattani, E.  |e Sonstige  |4 oth 
700 1 |a El Zein, Fouad  |e Sonstige  |0 (DE-588)141328835  |4 oth 
700 1 |a Griffiths, Phillip  |d 1938-  |e Sonstige  |0 (DE-588)131881434  |4 oth 
700 1 |a Lê, Dũng Tráng  |d 1947-  |e Sonstige  |0 (DE-588)138156530  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028499726 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295360131006464
any_adam_object
author_GND (DE-588)141328835
(DE-588)131881434
(DE-588)138156530
building Verbundindex
bvnumber BV043075534
collection ZDB-4-EBA
ctrlnum (OCoLC)880057790
(DE-599)BVBBV043075534
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05796nam a2200601zcb4500</leader><controlfield tag="001">BV043075534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190312 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2014 xx o|||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306783666</subfield><subfield code="9">1-306-78366-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400851475</subfield><subfield code="9">1-4008-5147-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306783668</subfield><subfield code="9">978-1-306-78366-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400851478</subfield><subfield code="9">978-1-4008-5147-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)880057790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043075534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hodge Theory (MN-49)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (608 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical notes (Princeton University Press)</subfield><subfield code="v">49</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.1.6 Cohomology Class of a Subvariety and Hodge Conjecture</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Title; Copyright; Contributors; Contributors; Contents; Preface; 1 Kähler Manifolds; 1.1 Complex Manifolds; 1.1.1 Definition and Examples; 1.1.2 Holomorphic Vector Bundles; 1.2 Differential Forms on Complex Manifolds; 1.2.1 Almost Complex Manifolds; 1.2.2 Tangent and Cotangent Space; 1.2.3 De Rham and Dolbeault Cohomologies; 1.3 Symplectic, Hermitian, and Kähler Structures; 1.3.1 Kähler Manifolds; 1.3.2 The Chern Class of a Holomorphic Line Bundle; 1.4 Harmonic Forms-Hodge Theorem; 1.4.1 Compact Real Manifolds; 1.4.2 The [del symbol] -Laplacian; 1.5 Cohomology of Compact Kähler Manifolds</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.5.1 The Kähler Identities1.5.2 The Hodge Decomposition Theorem; 1.5.3 Lefschetz Theorems and Hodge-Riemann Bilinear Relations; A Linear Algebra; A.1 Real and Complex Vector Spaces; A.2 The Weight Filtration of a Nilpotent Transformation; A.3 Representations of sl(2,C) and Lefschetz Theorems; A.4 Hodge Structures; B The Kähler Identities; B.1 Symplectic Linear Algebra; B.2 Compatible Inner Products; B.3 Symplectic Manifolds; B.4 The Kähler Identities; Bibliography; 2 The Algebraic de Rham Theorem; Introduction; Part I. Sheaf Cohomology, Hypercohomology, and the Projective Case; 2.1 Sheaves</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.1.1 The Étalé Space of a Presheaf2.1.2 Exact Sequences of Sheaves; 2.1.3 Resolutions; 2.2 Sheaf Cohomology; 2.2.1 Godement's Canonical Resolution; 2.2.2 Cohomology with Coefficients in a Sheaf; 2.2.3 Flasque Sheaves; 2.2.4 Cohomology Sheaves and Exact Functors; 2.2.5 Fine Sheaves; 2.2.6 Cohomology with Coefficients in a Fine Sheaf; 2.3 Coherent Sheaves and Serre's GAGA Principle; 2.4 The Hypercohomology of a Complex of Sheaves; 2.4.1 The Spectral Sequences of Hypercohomology; 2.4.2 Acyclic Resolutions; 2.5 The Analytic de Rham Theorem; 2.5.1 The Holomorphic Poincaré Lemma</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.5.2 The Analytic de Rham Theorem2.6 The Algebraic de Rham Theorem for a Projective Variety; Part II. Čech Cohomology and the Algebraic de Rham Theorem in General; 2.7 Čech Cohomology of a Sheaf; 2.7.1 Čech Cohomology of an Open Cover; 2.7.2 Relation Between Čech Cohomology and Sheaf Cohomology; 2.8 Čech Cohomology of a Complex of Sheaves; 2.8.1 The Relation Between Čech Cohomology and Hypercohomology; 2.9 Reduction to the Affine Case; 2.9.1 Proof that the General Case Implies the Affine Case; 2.9.2 Proof that the Affine Case Implies the General Case</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.10 The Algebraic de Rham Theorem for an Affine Variety2.10.1 The Hypercohomology of the Direct Image of a Sheaf of Smooth Forms; 2.10.2 The Hypercohomology of Rational and Meromorphic Forms; 2.10.3 Comparison of Meromorphic and Smooth Forms; Bibliography; 3 Mixed Hodge Structures; 3.1 Hodge Structure on a Smooth Compact Complex Variety; 3.1.1 Hodge Structure (HS); 3.1.2 Spectral Sequence of a Filtered Complex; 3.1.3 Hodge Structure on the Cohomology of Nonsingular Compact Complex Algebraic Varieties; 3.1.4 Lefschetz Decomposition and Polarized Hodge Structure; 3.1.5 Examples</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides a comprehensive and up-to-date introduction to Hodge theory-one of the central and most vibrant areas of contemporary mathematics-from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics) / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Algebraic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hodge theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hodge theory</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cattani, E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El Zein, Fouad</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)141328835</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffiths, Phillip</subfield><subfield code="d">1938-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)131881434</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lê, Dũng Tráng</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)138156530</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=710135</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028499726</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=710135</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=710135</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
genre (DE-588)1071861417 Konferenzschrift gnd-content
genre_facet Konferenzschrift
id DE-604.BV043075534
illustrated Not Illustrated
indexdate 2024-12-24T04:40:58Z
institution BVB
isbn 1306783666
1400851475
9781306783668
9781400851478
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028499726
oclc_num 880057790
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (608 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2014
publishDateSearch 2014
publishDateSort 2014
publisher Princeton University Press
record_format marc
series2 Mathematical notes (Princeton University Press)
spelling Hodge Theory (MN-49)
Princeton Princeton University Press 2014
1 Online-Ressource (608 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematical notes (Princeton University Press) 49
3.1.6 Cohomology Class of a Subvariety and Hodge Conjecture
Cover; Title; Copyright; Contributors; Contributors; Contents; Preface; 1 Kähler Manifolds; 1.1 Complex Manifolds; 1.1.1 Definition and Examples; 1.1.2 Holomorphic Vector Bundles; 1.2 Differential Forms on Complex Manifolds; 1.2.1 Almost Complex Manifolds; 1.2.2 Tangent and Cotangent Space; 1.2.3 De Rham and Dolbeault Cohomologies; 1.3 Symplectic, Hermitian, and Kähler Structures; 1.3.1 Kähler Manifolds; 1.3.2 The Chern Class of a Holomorphic Line Bundle; 1.4 Harmonic Forms-Hodge Theorem; 1.4.1 Compact Real Manifolds; 1.4.2 The [del symbol] -Laplacian; 1.5 Cohomology of Compact Kähler Manifolds
1.5.1 The Kähler Identities1.5.2 The Hodge Decomposition Theorem; 1.5.3 Lefschetz Theorems and Hodge-Riemann Bilinear Relations; A Linear Algebra; A.1 Real and Complex Vector Spaces; A.2 The Weight Filtration of a Nilpotent Transformation; A.3 Representations of sl(2,C) and Lefschetz Theorems; A.4 Hodge Structures; B The Kähler Identities; B.1 Symplectic Linear Algebra; B.2 Compatible Inner Products; B.3 Symplectic Manifolds; B.4 The Kähler Identities; Bibliography; 2 The Algebraic de Rham Theorem; Introduction; Part I. Sheaf Cohomology, Hypercohomology, and the Projective Case; 2.1 Sheaves
2.1.1 The Étalé Space of a Presheaf2.1.2 Exact Sequences of Sheaves; 2.1.3 Resolutions; 2.2 Sheaf Cohomology; 2.2.1 Godement's Canonical Resolution; 2.2.2 Cohomology with Coefficients in a Sheaf; 2.2.3 Flasque Sheaves; 2.2.4 Cohomology Sheaves and Exact Functors; 2.2.5 Fine Sheaves; 2.2.6 Cohomology with Coefficients in a Fine Sheaf; 2.3 Coherent Sheaves and Serre's GAGA Principle; 2.4 The Hypercohomology of a Complex of Sheaves; 2.4.1 The Spectral Sequences of Hypercohomology; 2.4.2 Acyclic Resolutions; 2.5 The Analytic de Rham Theorem; 2.5.1 The Holomorphic Poincaré Lemma
2.5.2 The Analytic de Rham Theorem2.6 The Algebraic de Rham Theorem for a Projective Variety; Part II. Čech Cohomology and the Algebraic de Rham Theorem in General; 2.7 Čech Cohomology of a Sheaf; 2.7.1 Čech Cohomology of an Open Cover; 2.7.2 Relation Between Čech Cohomology and Sheaf Cohomology; 2.8 Čech Cohomology of a Complex of Sheaves; 2.8.1 The Relation Between Čech Cohomology and Hypercohomology; 2.9 Reduction to the Affine Case; 2.9.1 Proof that the General Case Implies the Affine Case; 2.9.2 Proof that the Affine Case Implies the General Case
2.10 The Algebraic de Rham Theorem for an Affine Variety2.10.1 The Hypercohomology of the Direct Image of a Sheaf of Smooth Forms; 2.10.2 The Hypercohomology of Rational and Meromorphic Forms; 2.10.3 Comparison of Meromorphic and Smooth Forms; Bibliography; 3 Mixed Hodge Structures; 3.1 Hodge Structure on a Smooth Compact Complex Variety; 3.1.1 Hodge Structure (HS); 3.1.2 Spectral Sequence of a Filtered Complex; 3.1.3 Hodge Structure on the Cohomology of Nonsingular Compact Complex Algebraic Varieties; 3.1.4 Lefschetz Decomposition and Polarized Hodge Structure; 3.1.5 Examples
This book provides a comprehensive and up-to-date introduction to Hodge theory-one of the central and most vibrant areas of contemporary mathematics-from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students
Manifolds (Mathematics) / Congresses
Mathematics
MATHEMATICS / Geometry / General bisacsh
MATHEMATICS / Group Theory bisacsh
Geometry, Algebraic fast
Hodge theory fast
Mathematik
Hodge theory Congresses
Geometry, Algebraic Congresses
(DE-588)1071861417 Konferenzschrift gnd-content
Cattani, E. Sonstige oth
El Zein, Fouad Sonstige (DE-588)141328835 oth
Griffiths, Phillip 1938- Sonstige (DE-588)131881434 oth
Lê, Dũng Tráng 1947- Sonstige (DE-588)138156530 oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135 Aggregator Volltext
spellingShingle Hodge Theory (MN-49)
Manifolds (Mathematics) / Congresses
Mathematics
MATHEMATICS / Geometry / General bisacsh
MATHEMATICS / Group Theory bisacsh
Geometry, Algebraic fast
Hodge theory fast
Mathematik
Hodge theory Congresses
Geometry, Algebraic Congresses
subject_GND (DE-588)1071861417
title Hodge Theory (MN-49)
title_auth Hodge Theory (MN-49)
title_exact_search Hodge Theory (MN-49)
title_full Hodge Theory (MN-49)
title_fullStr Hodge Theory (MN-49)
title_full_unstemmed Hodge Theory (MN-49)
title_short Hodge Theory (MN-49)
title_sort hodge theory mn 49
topic Manifolds (Mathematics) / Congresses
Mathematics
MATHEMATICS / Geometry / General bisacsh
MATHEMATICS / Group Theory bisacsh
Geometry, Algebraic fast
Hodge theory fast
Mathematik
Hodge theory Congresses
Geometry, Algebraic Congresses
topic_facet Manifolds (Mathematics) / Congresses
Mathematics
MATHEMATICS / Geometry / General
MATHEMATICS / Group Theory
Geometry, Algebraic
Hodge theory
Mathematik
Hodge theory Congresses
Geometry, Algebraic Congresses
Konferenzschrift
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135
work_keys_str_mv AT cattanie hodgetheorymn49
AT elzeinfouad hodgetheorymn49
AT griffithsphillip hodgetheorymn49
AT ledungtrang hodgetheorymn49