Hodge Theory (MN-49)
Gespeichert in:
Format: | Elektronisch E-Book |
---|---|
Sprache: | English |
Veröffentlicht: |
Princeton
Princeton University Press
2014
|
Schriftenreihe: | Mathematical notes (Princeton University Press)
49 |
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1047 Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV043075534 | ||
003 | DE-604 | ||
005 | 20190312 | ||
007 | cr|uuu---uuuuu | ||
008 | 151126s2014 xx o|||| 10||| eng d | ||
020 | |a 1306783666 |9 1-306-78366-6 | ||
020 | |a 1400851475 |9 1-4008-5147-5 | ||
020 | |a 9781306783668 |9 978-1-306-78366-8 | ||
020 | |a 9781400851478 |9 978-1-4008-5147-8 | ||
035 | |a (OCoLC)880057790 | ||
035 | |a (DE-599)BVBBV043075534 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 516.36 |2 22 | |
245 | 1 | 0 | |a Hodge Theory (MN-49) |
264 | 1 | |a Princeton |b Princeton University Press |c 2014 | |
300 | |a 1 Online-Ressource (608 pages) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematical notes (Princeton University Press) |v 49 | |
500 | |a 3.1.6 Cohomology Class of a Subvariety and Hodge Conjecture | ||
500 | |a Cover; Title; Copyright; Contributors; Contributors; Contents; Preface; 1 Kähler Manifolds; 1.1 Complex Manifolds; 1.1.1 Definition and Examples; 1.1.2 Holomorphic Vector Bundles; 1.2 Differential Forms on Complex Manifolds; 1.2.1 Almost Complex Manifolds; 1.2.2 Tangent and Cotangent Space; 1.2.3 De Rham and Dolbeault Cohomologies; 1.3 Symplectic, Hermitian, and Kähler Structures; 1.3.1 Kähler Manifolds; 1.3.2 The Chern Class of a Holomorphic Line Bundle; 1.4 Harmonic Forms-Hodge Theorem; 1.4.1 Compact Real Manifolds; 1.4.2 The [del symbol] -Laplacian; 1.5 Cohomology of Compact Kähler Manifolds | ||
500 | |a 1.5.1 The Kähler Identities1.5.2 The Hodge Decomposition Theorem; 1.5.3 Lefschetz Theorems and Hodge-Riemann Bilinear Relations; A Linear Algebra; A.1 Real and Complex Vector Spaces; A.2 The Weight Filtration of a Nilpotent Transformation; A.3 Representations of sl(2,C) and Lefschetz Theorems; A.4 Hodge Structures; B The Kähler Identities; B.1 Symplectic Linear Algebra; B.2 Compatible Inner Products; B.3 Symplectic Manifolds; B.4 The Kähler Identities; Bibliography; 2 The Algebraic de Rham Theorem; Introduction; Part I. Sheaf Cohomology, Hypercohomology, and the Projective Case; 2.1 Sheaves | ||
500 | |a 2.1.1 The Étalé Space of a Presheaf2.1.2 Exact Sequences of Sheaves; 2.1.3 Resolutions; 2.2 Sheaf Cohomology; 2.2.1 Godement's Canonical Resolution; 2.2.2 Cohomology with Coefficients in a Sheaf; 2.2.3 Flasque Sheaves; 2.2.4 Cohomology Sheaves and Exact Functors; 2.2.5 Fine Sheaves; 2.2.6 Cohomology with Coefficients in a Fine Sheaf; 2.3 Coherent Sheaves and Serre's GAGA Principle; 2.4 The Hypercohomology of a Complex of Sheaves; 2.4.1 The Spectral Sequences of Hypercohomology; 2.4.2 Acyclic Resolutions; 2.5 The Analytic de Rham Theorem; 2.5.1 The Holomorphic Poincaré Lemma | ||
500 | |a 2.5.2 The Analytic de Rham Theorem2.6 The Algebraic de Rham Theorem for a Projective Variety; Part II. Čech Cohomology and the Algebraic de Rham Theorem in General; 2.7 Čech Cohomology of a Sheaf; 2.7.1 Čech Cohomology of an Open Cover; 2.7.2 Relation Between Čech Cohomology and Sheaf Cohomology; 2.8 Čech Cohomology of a Complex of Sheaves; 2.8.1 The Relation Between Čech Cohomology and Hypercohomology; 2.9 Reduction to the Affine Case; 2.9.1 Proof that the General Case Implies the Affine Case; 2.9.2 Proof that the Affine Case Implies the General Case | ||
500 | |a 2.10 The Algebraic de Rham Theorem for an Affine Variety2.10.1 The Hypercohomology of the Direct Image of a Sheaf of Smooth Forms; 2.10.2 The Hypercohomology of Rational and Meromorphic Forms; 2.10.3 Comparison of Meromorphic and Smooth Forms; Bibliography; 3 Mixed Hodge Structures; 3.1 Hodge Structure on a Smooth Compact Complex Variety; 3.1.1 Hodge Structure (HS); 3.1.2 Spectral Sequence of a Filtered Complex; 3.1.3 Hodge Structure on the Cohomology of Nonsingular Compact Complex Algebraic Varieties; 3.1.4 Lefschetz Decomposition and Polarized Hodge Structure; 3.1.5 Examples | ||
500 | |a This book provides a comprehensive and up-to-date introduction to Hodge theory-one of the central and most vibrant areas of contemporary mathematics-from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students | ||
650 | 4 | |a Manifolds (Mathematics) / Congresses | |
650 | 4 | |a Mathematics | |
650 | 7 | |a MATHEMATICS / Geometry / General |2 bisacsh | |
650 | 7 | |a MATHEMATICS / Group Theory |2 bisacsh | |
650 | 7 | |a Geometry, Algebraic |2 fast | |
650 | 7 | |a Hodge theory |2 fast | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Hodge theory |v Congresses | |
650 | 4 | |a Geometry, Algebraic |v Congresses | |
655 | 7 | |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
700 | 1 | |a Cattani, E. |e Sonstige |4 oth | |
700 | 1 | |a El Zein, Fouad |e Sonstige |0 (DE-588)141328835 |4 oth | |
700 | 1 | |a Griffiths, Phillip |d 1938- |e Sonstige |0 (DE-588)131881434 |4 oth | |
700 | 1 | |a Lê, Dũng Tráng |d 1947- |e Sonstige |0 (DE-588)138156530 |4 oth | |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028499726 | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135 |l DE-1046 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135 |l DE-1047 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1819295360131006464 |
---|---|
any_adam_object | |
author_GND | (DE-588)141328835 (DE-588)131881434 (DE-588)138156530 |
building | Verbundindex |
bvnumber | BV043075534 |
collection | ZDB-4-EBA |
ctrlnum | (OCoLC)880057790 (DE-599)BVBBV043075534 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05796nam a2200601zcb4500</leader><controlfield tag="001">BV043075534</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190312 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151126s2014 xx o|||| 10||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1306783666</subfield><subfield code="9">1-306-78366-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400851475</subfield><subfield code="9">1-4008-5147-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781306783668</subfield><subfield code="9">978-1-306-78366-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400851478</subfield><subfield code="9">978-1-4008-5147-8</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)880057790</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043075534</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hodge Theory (MN-49)</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2014</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (608 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematical notes (Princeton University Press)</subfield><subfield code="v">49</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">3.1.6 Cohomology Class of a Subvariety and Hodge Conjecture</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Cover; Title; Copyright; Contributors; Contributors; Contents; Preface; 1 Kähler Manifolds; 1.1 Complex Manifolds; 1.1.1 Definition and Examples; 1.1.2 Holomorphic Vector Bundles; 1.2 Differential Forms on Complex Manifolds; 1.2.1 Almost Complex Manifolds; 1.2.2 Tangent and Cotangent Space; 1.2.3 De Rham and Dolbeault Cohomologies; 1.3 Symplectic, Hermitian, and Kähler Structures; 1.3.1 Kähler Manifolds; 1.3.2 The Chern Class of a Holomorphic Line Bundle; 1.4 Harmonic Forms-Hodge Theorem; 1.4.1 Compact Real Manifolds; 1.4.2 The [del symbol] -Laplacian; 1.5 Cohomology of Compact Kähler Manifolds</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">1.5.1 The Kähler Identities1.5.2 The Hodge Decomposition Theorem; 1.5.3 Lefschetz Theorems and Hodge-Riemann Bilinear Relations; A Linear Algebra; A.1 Real and Complex Vector Spaces; A.2 The Weight Filtration of a Nilpotent Transformation; A.3 Representations of sl(2,C) and Lefschetz Theorems; A.4 Hodge Structures; B The Kähler Identities; B.1 Symplectic Linear Algebra; B.2 Compatible Inner Products; B.3 Symplectic Manifolds; B.4 The Kähler Identities; Bibliography; 2 The Algebraic de Rham Theorem; Introduction; Part I. Sheaf Cohomology, Hypercohomology, and the Projective Case; 2.1 Sheaves</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.1.1 The Étalé Space of a Presheaf2.1.2 Exact Sequences of Sheaves; 2.1.3 Resolutions; 2.2 Sheaf Cohomology; 2.2.1 Godement's Canonical Resolution; 2.2.2 Cohomology with Coefficients in a Sheaf; 2.2.3 Flasque Sheaves; 2.2.4 Cohomology Sheaves and Exact Functors; 2.2.5 Fine Sheaves; 2.2.6 Cohomology with Coefficients in a Fine Sheaf; 2.3 Coherent Sheaves and Serre's GAGA Principle; 2.4 The Hypercohomology of a Complex of Sheaves; 2.4.1 The Spectral Sequences of Hypercohomology; 2.4.2 Acyclic Resolutions; 2.5 The Analytic de Rham Theorem; 2.5.1 The Holomorphic Poincaré Lemma</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.5.2 The Analytic de Rham Theorem2.6 The Algebraic de Rham Theorem for a Projective Variety; Part II. Čech Cohomology and the Algebraic de Rham Theorem in General; 2.7 Čech Cohomology of a Sheaf; 2.7.1 Čech Cohomology of an Open Cover; 2.7.2 Relation Between Čech Cohomology and Sheaf Cohomology; 2.8 Čech Cohomology of a Complex of Sheaves; 2.8.1 The Relation Between Čech Cohomology and Hypercohomology; 2.9 Reduction to the Affine Case; 2.9.1 Proof that the General Case Implies the Affine Case; 2.9.2 Proof that the Affine Case Implies the General Case</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">2.10 The Algebraic de Rham Theorem for an Affine Variety2.10.1 The Hypercohomology of the Direct Image of a Sheaf of Smooth Forms; 2.10.2 The Hypercohomology of Rational and Meromorphic Forms; 2.10.3 Comparison of Meromorphic and Smooth Forms; Bibliography; 3 Mixed Hodge Structures; 3.1 Hodge Structure on a Smooth Compact Complex Variety; 3.1.1 Hodge Structure (HS); 3.1.2 Spectral Sequence of a Filtered Complex; 3.1.3 Hodge Structure on the Cohomology of Nonsingular Compact Complex Algebraic Varieties; 3.1.4 Lefschetz Decomposition and Polarized Hodge Structure; 3.1.5 Examples</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book provides a comprehensive and up-to-date introduction to Hodge theory-one of the central and most vibrant areas of contemporary mathematics-from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds (Mathematics) / Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Geometry / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Group Theory</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Geometry, Algebraic</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Hodge theory</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hodge theory</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, Algebraic</subfield><subfield code="v">Congresses</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cattani, E.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">El Zein, Fouad</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)141328835</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Griffiths, Phillip</subfield><subfield code="d">1938-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)131881434</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lê, Dũng Tráng</subfield><subfield code="d">1947-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)138156530</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028499726</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
genre | (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV043075534 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:40:58Z |
institution | BVB |
isbn | 1306783666 1400851475 9781306783668 9781400851478 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028499726 |
oclc_num | 880057790 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 Online-Ressource (608 pages) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2014 |
publishDateSearch | 2014 |
publishDateSort | 2014 |
publisher | Princeton University Press |
record_format | marc |
series2 | Mathematical notes (Princeton University Press) |
spelling | Hodge Theory (MN-49) Princeton Princeton University Press 2014 1 Online-Ressource (608 pages) txt rdacontent c rdamedia cr rdacarrier Mathematical notes (Princeton University Press) 49 3.1.6 Cohomology Class of a Subvariety and Hodge Conjecture Cover; Title; Copyright; Contributors; Contributors; Contents; Preface; 1 Kähler Manifolds; 1.1 Complex Manifolds; 1.1.1 Definition and Examples; 1.1.2 Holomorphic Vector Bundles; 1.2 Differential Forms on Complex Manifolds; 1.2.1 Almost Complex Manifolds; 1.2.2 Tangent and Cotangent Space; 1.2.3 De Rham and Dolbeault Cohomologies; 1.3 Symplectic, Hermitian, and Kähler Structures; 1.3.1 Kähler Manifolds; 1.3.2 The Chern Class of a Holomorphic Line Bundle; 1.4 Harmonic Forms-Hodge Theorem; 1.4.1 Compact Real Manifolds; 1.4.2 The [del symbol] -Laplacian; 1.5 Cohomology of Compact Kähler Manifolds 1.5.1 The Kähler Identities1.5.2 The Hodge Decomposition Theorem; 1.5.3 Lefschetz Theorems and Hodge-Riemann Bilinear Relations; A Linear Algebra; A.1 Real and Complex Vector Spaces; A.2 The Weight Filtration of a Nilpotent Transformation; A.3 Representations of sl(2,C) and Lefschetz Theorems; A.4 Hodge Structures; B The Kähler Identities; B.1 Symplectic Linear Algebra; B.2 Compatible Inner Products; B.3 Symplectic Manifolds; B.4 The Kähler Identities; Bibliography; 2 The Algebraic de Rham Theorem; Introduction; Part I. Sheaf Cohomology, Hypercohomology, and the Projective Case; 2.1 Sheaves 2.1.1 The Étalé Space of a Presheaf2.1.2 Exact Sequences of Sheaves; 2.1.3 Resolutions; 2.2 Sheaf Cohomology; 2.2.1 Godement's Canonical Resolution; 2.2.2 Cohomology with Coefficients in a Sheaf; 2.2.3 Flasque Sheaves; 2.2.4 Cohomology Sheaves and Exact Functors; 2.2.5 Fine Sheaves; 2.2.6 Cohomology with Coefficients in a Fine Sheaf; 2.3 Coherent Sheaves and Serre's GAGA Principle; 2.4 The Hypercohomology of a Complex of Sheaves; 2.4.1 The Spectral Sequences of Hypercohomology; 2.4.2 Acyclic Resolutions; 2.5 The Analytic de Rham Theorem; 2.5.1 The Holomorphic Poincaré Lemma 2.5.2 The Analytic de Rham Theorem2.6 The Algebraic de Rham Theorem for a Projective Variety; Part II. Čech Cohomology and the Algebraic de Rham Theorem in General; 2.7 Čech Cohomology of a Sheaf; 2.7.1 Čech Cohomology of an Open Cover; 2.7.2 Relation Between Čech Cohomology and Sheaf Cohomology; 2.8 Čech Cohomology of a Complex of Sheaves; 2.8.1 The Relation Between Čech Cohomology and Hypercohomology; 2.9 Reduction to the Affine Case; 2.9.1 Proof that the General Case Implies the Affine Case; 2.9.2 Proof that the Affine Case Implies the General Case 2.10 The Algebraic de Rham Theorem for an Affine Variety2.10.1 The Hypercohomology of the Direct Image of a Sheaf of Smooth Forms; 2.10.2 The Hypercohomology of Rational and Meromorphic Forms; 2.10.3 Comparison of Meromorphic and Smooth Forms; Bibliography; 3 Mixed Hodge Structures; 3.1 Hodge Structure on a Smooth Compact Complex Variety; 3.1.1 Hodge Structure (HS); 3.1.2 Spectral Sequence of a Filtered Complex; 3.1.3 Hodge Structure on the Cohomology of Nonsingular Compact Complex Algebraic Varieties; 3.1.4 Lefschetz Decomposition and Polarized Hodge Structure; 3.1.5 Examples This book provides a comprehensive and up-to-date introduction to Hodge theory-one of the central and most vibrant areas of contemporary mathematics-from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students Manifolds (Mathematics) / Congresses Mathematics MATHEMATICS / Geometry / General bisacsh MATHEMATICS / Group Theory bisacsh Geometry, Algebraic fast Hodge theory fast Mathematik Hodge theory Congresses Geometry, Algebraic Congresses (DE-588)1071861417 Konferenzschrift gnd-content Cattani, E. Sonstige oth El Zein, Fouad Sonstige (DE-588)141328835 oth Griffiths, Phillip 1938- Sonstige (DE-588)131881434 oth Lê, Dũng Tráng 1947- Sonstige (DE-588)138156530 oth http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135 Aggregator Volltext |
spellingShingle | Hodge Theory (MN-49) Manifolds (Mathematics) / Congresses Mathematics MATHEMATICS / Geometry / General bisacsh MATHEMATICS / Group Theory bisacsh Geometry, Algebraic fast Hodge theory fast Mathematik Hodge theory Congresses Geometry, Algebraic Congresses |
subject_GND | (DE-588)1071861417 |
title | Hodge Theory (MN-49) |
title_auth | Hodge Theory (MN-49) |
title_exact_search | Hodge Theory (MN-49) |
title_full | Hodge Theory (MN-49) |
title_fullStr | Hodge Theory (MN-49) |
title_full_unstemmed | Hodge Theory (MN-49) |
title_short | Hodge Theory (MN-49) |
title_sort | hodge theory mn 49 |
topic | Manifolds (Mathematics) / Congresses Mathematics MATHEMATICS / Geometry / General bisacsh MATHEMATICS / Group Theory bisacsh Geometry, Algebraic fast Hodge theory fast Mathematik Hodge theory Congresses Geometry, Algebraic Congresses |
topic_facet | Manifolds (Mathematics) / Congresses Mathematics MATHEMATICS / Geometry / General MATHEMATICS / Group Theory Geometry, Algebraic Hodge theory Mathematik Hodge theory Congresses Geometry, Algebraic Congresses Konferenzschrift |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=710135 |
work_keys_str_mv | AT cattanie hodgetheorymn49 AT elzeinfouad hodgetheorymn49 AT griffithsphillip hodgetheorymn49 AT ledungtrang hodgetheorymn49 |