Outcome prediction in cancer

Gespeichert in:
Bibliographische Detailangaben
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Amsterdam Elsevier c2007
Ausgabe:1st ed
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043044049
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151123s2007 xx o|||| 00||| eng d
020 |a 0080468039  |c electronic bk.  |9 0-08-046803-9 
020 |a 0444528555  |9 0-444-52855-5 
020 |a 9780080468037  |c electronic bk.  |9 978-0-08-046803-7 
020 |a 9780444528551  |9 978-0-444-52855-1 
035 |a (OCoLC)162131472 
035 |a (DE-599)BVBBV043044049 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 616.99/4075  |2 22 
245 1 0 |a Outcome prediction in cancer  |c editors, Azzam F.G. Taktak and Anthony C. Fisher 
250 |a 1st ed 
264 1 |a Amsterdam  |b Elsevier  |c c2007 
300 |a 1 Online-Ressource (xx, 461 p.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a This book is organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle. The first section describes the clinical problem and some of the predicaments that clinicians face in dealing with cancer. Amongst issues discussed in this section are the TNM staging, accepted methods for survival analysis and competing risks. The second section describes the biological and genetic markers and the r̥le of bioinformatics. Understanding of the genetic and environmental basis of cancers will help in identifying high-risk populations and developing effective prevention and early detection strategies. The third section provides technical details of mathematical analysis behind survival prediction backed up by examples from various types of cancers. The fourth section describes a number of machine learning methods which have been applied to decision support in cancer. The final section describes how information is shared within the scientific and medical communities and with the general population using information technology and the World Wide Web. * Applications cover 8 types of cancer including brain, eye, mouth, head and neck, breast, lungs, colon and prostate * Include contributions from authors in 5 different disciplines * Provides a valuable educational tool for medical informatics 
500 |a Section 1 The Clinical Problem. -- THE PREDICTIVE VALUE OF DETAILED HISTOLOGICAL STAGING OF SURGICAL RESECTION SPECIMENS IN ORAL CANCER -- Chapter 1: The predictive value of detailed histological staging of surgical resection specimens in oral cancer. -- J. Woolgar -- Liverpool Dental School, UK -- Chapter 2: Survival after Treatment of Intraocular Melanoma. -- B.E. Damato, A.F.G. Taktak, -- Royal Liverpool University Hospital, UK -- Chapter 3: Recent developments in relative survival analysis. -- T. Hakulinen, T.A. Dyba, -- Finnish Cancer Registry -- Section 2 Biological and Genetic Factors -- Chapter 4: Environmental and genetic risk factors of lung cancer. -- A. Cassidy, J.K. Field, -- University of Liverpool, UK -- Chapter 5: Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer. -- A.S. Jones, -- University Hospital Aintree, UK -- Section 3 Mathematical Background of Prognostic Models --  
500 |a  - Chapter 6: Flexible hazard modelling for outcome prediction in cancer -- perspectives for the use of bioinformatics knowledge. -- E. Biganzoli1, P. Boracchi2 -- 1 Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy -- 2 Universit̉ degli Studi di Milano, Milano, Italy -- Chapter 7: Information geometry for survival analysis and feature selection by neural networks. -- A. Eleuteri 1,2, R. Tagliaferri 3,4, L. Milano 1,2, M. De Laurentiis 1 -- 1Universit̉ di Napoli, Italy -- 2INFN sez. Napoli, Italy -- 3Universit'a di Salerno, Italy -- 4INFN sez. distaccata di Salerno, Italy -- Chapter 8: Artificial neural networks used in the survival analysis of breast cancer patients: A node negative study. -- C.T.C. Arsene, P.J. Lisboa, -- Liverpool John Moores University, UK -- Section 4 Application of Machine Learning Methods -- Chapter 9: The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients. -- A. Marchevsky, --  
500 |a  - Cedars-Sinai Medical Center, Los Angeles, USA -- Chapter 10: Machine learning contribution to solve prognosis medical problems. -- F. Baronti, A. Micheli, A. Passaro, A. Starita, -- University of Pisa, Italy -- Chapter 11: Classification of brain tumours by pattern recognition of Magnetic Resonance Imaging and Spectroscopic data. -- A. Devos1, S. Van Huffel1 A.W. Simonetti1, M. van der Graaf2, A. Heerschap2, L.M.C. Buydens3 -- 1Katholieke Universiteit Leuven, Belgium -- 2University Nijmegen Medical Centre, The Netherlands -- 3Radboud University Nijmegen, The Netherlands -- -- Chapter 12: Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data. -- M. Kokuer1, R.N.G. Naguib1, P. Jancovic2, H.B. Younghusband3, R. Green3 -- 1Coventry University, UK -- 2University of Birmingham, UK -- 3University of Newfoundland, Canada -- Chapter 13: The impact of microarray technology in brain cancer. -- M. Kounelakis1, M. Zervakis1, X. Kotsiakis2 --  
500 |a  - 1Technical University of Crete, GREECE -- 2District Hospital of Chania, GREECE -- Section 5 Dissemination of Information -- Chapter 14: The web and the new generation of medical information. -- J.M. Fonseca, A.D. Mora, P. Barroso -- University of Lisbon, Portugal -- Chapter 15: Geoconda: a web environment for multi-centre research. -- C. Setzkorn, A.F.G. Taktak, B.E. Damato -- Royal Liverpool University Hospital, Liverpool, UK -- Chapter 16: The development and execution of medical prediction models. -- M.W. Kattan1, M. G̲nen2, P.T. Scardino2 -- 1The Cleveland Clinic Fondation, Cleveland, USA -- 2Memorial Sloan-Kettering Cancer Center, New York, USA. 
500 |a Includes bibliographical references and index 
500 |a The predictive value of detailed histological staging of surgical resection specimens in oral cancer -- Survival after treatment of intraocular melanoma -- Recent developments in relative survival analysis -- Environmental and genetic risk factors of lung cancer -- Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer -- Flexible hazard modelling for outcome prediction in cancer: perspectives for the use of bioinformatics knowledge -- Information geometry for survival analysis and feature selection by neural networks -- Artificial neural networks used in the survival analysis of breast cancer patients: a node-negative study -- The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients -- Machine learning contribution to solve prognostic medical problems -- Classification of brain tumors by pattern recognition of magnetic resonance imaging and spectroscopic data -- Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data -- The impact of microarray technology in brain cancer -- The web and the new generation of medical information systems -- Geoconda: a web environment for multi-centre research -- The development and execution of medical prediction models 
650 7 |a MEDICAL / Oncology  |2 bisacsh 
650 7 |a HEALTH & FITNESS / Diseases / Cancer  |2 bisacsh 
650 7 |a Cancer / Diagnosis  |2 fast 
650 7 |a Cancer / Prognosis  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
650 7 |a Survival analysis (Biometry)  |2 fast 
650 4 |a Neoplasms / diagnosis 
650 4 |a Prognosis 
650 4 |a Medizin 
650 4 |a Cancer  |x Diagnosis 
650 4 |a Cancer  |x Prognosis 
650 4 |a Neural networks (Computer science) 
650 4 |a Survival analysis (Biometry) 
700 1 |a Taktak, Azzam F. G.  |e Sonstige  |4 oth 
700 1 |a Fisher, Anthony C.  |e Sonstige  |4 oth 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185784  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028468586 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185784  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185784  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295303245758464
any_adam_object
building Verbundindex
bvnumber BV043044049
collection ZDB-4-EBA
ctrlnum (OCoLC)162131472
(DE-599)BVBBV043044049
dewey-full 616.99/4075
dewey-hundreds 600 - Technology (Applied sciences)
dewey-ones 616 - Diseases
dewey-raw 616.99/4075
dewey-search 616.99/4075
dewey-sort 3616.99 44075
dewey-tens 610 - Medicine and health
discipline Medizin
edition 1st ed
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>08475nam a2200613zc 4500</leader><controlfield tag="001">BV043044049</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151123s2007 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0080468039</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">0-08-046803-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0444528555</subfield><subfield code="9">0-444-52855-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780080468037</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-0-08-046803-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780444528551</subfield><subfield code="9">978-0-444-52855-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)162131472</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043044049</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">616.99/4075</subfield><subfield code="2">22</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Outcome prediction in cancer</subfield><subfield code="c">editors, Azzam F.G. Taktak and Anthony C. Fisher</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">1st ed</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Amsterdam</subfield><subfield code="b">Elsevier</subfield><subfield code="c">c2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (xx, 461 p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle. The first section describes the clinical problem and some of the predicaments that clinicians face in dealing with cancer. Amongst issues discussed in this section are the TNM staging, accepted methods for survival analysis and competing risks. The second section describes the biological and genetic markers and the r̥le of bioinformatics. Understanding of the genetic and environmental basis of cancers will help in identifying high-risk populations and developing effective prevention and early detection strategies. The third section provides technical details of mathematical analysis behind survival prediction backed up by examples from various types of cancers. The fourth section describes a number of machine learning methods which have been applied to decision support in cancer. The final section describes how information is shared within the scientific and medical communities and with the general population using information technology and the World Wide Web. * Applications cover 8 types of cancer including brain, eye, mouth, head and neck, breast, lungs, colon and prostate * Include contributions from authors in 5 different disciplines * Provides a valuable educational tool for medical informatics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Section 1 The Clinical Problem. -- THE PREDICTIVE VALUE OF DETAILED HISTOLOGICAL STAGING OF SURGICAL RESECTION SPECIMENS IN ORAL CANCER -- Chapter 1: The predictive value of detailed histological staging of surgical resection specimens in oral cancer. -- J. Woolgar -- Liverpool Dental School, UK -- Chapter 2: Survival after Treatment of Intraocular Melanoma. -- B.E. Damato, A.F.G. Taktak, -- Royal Liverpool University Hospital, UK -- Chapter 3: Recent developments in relative survival analysis. -- T. Hakulinen, T.A. Dyba, -- Finnish Cancer Registry -- Section 2 Biological and Genetic Factors -- Chapter 4: Environmental and genetic risk factors of lung cancer. -- A. Cassidy, J.K. Field, -- University of Liverpool, UK -- Chapter 5: Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer. -- A.S. Jones, -- University Hospital Aintree, UK -- Section 3 Mathematical Background of Prognostic Models -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Chapter 6: Flexible hazard modelling for outcome prediction in cancer -- perspectives for the use of bioinformatics knowledge. -- E. Biganzoli1, P. Boracchi2 -- 1 Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy -- 2 Universit̉ degli Studi di Milano, Milano, Italy -- Chapter 7: Information geometry for survival analysis and feature selection by neural networks. -- A. Eleuteri 1,2, R. Tagliaferri 3,4, L. Milano 1,2, M. De Laurentiis 1 -- 1Universit̉ di Napoli, Italy -- 2INFN sez. Napoli, Italy -- 3Universit'a di Salerno, Italy -- 4INFN sez. distaccata di Salerno, Italy -- Chapter 8: Artificial neural networks used in the survival analysis of breast cancer patients: A node negative study. -- C.T.C. Arsene, P.J. Lisboa, -- Liverpool John Moores University, UK -- Section 4 Application of Machine Learning Methods -- Chapter 9: The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients. -- A. Marchevsky, -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - Cedars-Sinai Medical Center, Los Angeles, USA -- Chapter 10: Machine learning contribution to solve prognosis medical problems. -- F. Baronti, A. Micheli, A. Passaro, A. Starita, -- University of Pisa, Italy -- Chapter 11: Classification of brain tumours by pattern recognition of Magnetic Resonance Imaging and Spectroscopic data. -- A. Devos1, S. Van Huffel1 A.W. Simonetti1, M. van der Graaf2, A. Heerschap2, L.M.C. Buydens3 -- 1Katholieke Universiteit Leuven, Belgium -- 2University Nijmegen Medical Centre, The Netherlands -- 3Radboud University Nijmegen, The Netherlands -- -- Chapter 12: Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data. -- M. Kokuer1, R.N.G. Naguib1, P. Jancovic2, H.B. Younghusband3, R. Green3 -- 1Coventry University, UK -- 2University of Birmingham, UK -- 3University of Newfoundland, Canada -- Chapter 13: The impact of microarray technology in brain cancer. -- M. Kounelakis1, M. Zervakis1, X. Kotsiakis2 -- </subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a"> - 1Technical University of Crete, GREECE -- 2District Hospital of Chania, GREECE -- Section 5 Dissemination of Information -- Chapter 14: The web and the new generation of medical information. -- J.M. Fonseca, A.D. Mora, P. Barroso -- University of Lisbon, Portugal -- Chapter 15: Geoconda: a web environment for multi-centre research. -- C. Setzkorn, A.F.G. Taktak, B.E. Damato -- Royal Liverpool University Hospital, Liverpool, UK -- Chapter 16: The development and execution of medical prediction models. -- M.W. Kattan1, M. G̲nen2, P.T. Scardino2 -- 1The Cleveland Clinic Fondation, Cleveland, USA -- 2Memorial Sloan-Kettering Cancer Center, New York, USA.</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Includes bibliographical references and index</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The predictive value of detailed histological staging of surgical resection specimens in oral cancer -- Survival after treatment of intraocular melanoma -- Recent developments in relative survival analysis -- Environmental and genetic risk factors of lung cancer -- Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer -- Flexible hazard modelling for outcome prediction in cancer: perspectives for the use of bioinformatics knowledge -- Information geometry for survival analysis and feature selection by neural networks -- Artificial neural networks used in the survival analysis of breast cancer patients: a node-negative study -- The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients -- Machine learning contribution to solve prognostic medical problems -- Classification of brain tumors by pattern recognition of magnetic resonance imaging and spectroscopic data -- Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data -- The impact of microarray technology in brain cancer -- The web and the new generation of medical information systems -- Geoconda: a web environment for multi-centre research -- The development and execution of medical prediction models</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MEDICAL / Oncology</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">HEALTH &amp; FITNESS / Diseases / Cancer</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cancer / Diagnosis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Cancer / Prognosis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Neural networks (Computer science)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Survival analysis (Biometry)</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neoplasms / diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Prognosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Medizin</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancer</subfield><subfield code="x">Diagnosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cancer</subfield><subfield code="x">Prognosis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural networks (Computer science)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Survival analysis (Biometry)</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Taktak, Azzam F. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Fisher, Anthony C.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=185784</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028468586</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=185784</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=185784</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043044049
illustrated Not Illustrated
indexdate 2024-12-24T04:40:02Z
institution BVB
isbn 0080468039
0444528555
9780080468037
9780444528551
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028468586
oclc_num 162131472
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 Online-Ressource (xx, 461 p.)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Elsevier
record_format marc
spelling Outcome prediction in cancer editors, Azzam F.G. Taktak and Anthony C. Fisher
1st ed
Amsterdam Elsevier c2007
1 Online-Ressource (xx, 461 p.)
txt rdacontent
c rdamedia
cr rdacarrier
This book is organized into 4 sections, each looking at the question of outcome prediction in cancer from a different angle. The first section describes the clinical problem and some of the predicaments that clinicians face in dealing with cancer. Amongst issues discussed in this section are the TNM staging, accepted methods for survival analysis and competing risks. The second section describes the biological and genetic markers and the r̥le of bioinformatics. Understanding of the genetic and environmental basis of cancers will help in identifying high-risk populations and developing effective prevention and early detection strategies. The third section provides technical details of mathematical analysis behind survival prediction backed up by examples from various types of cancers. The fourth section describes a number of machine learning methods which have been applied to decision support in cancer. The final section describes how information is shared within the scientific and medical communities and with the general population using information technology and the World Wide Web. * Applications cover 8 types of cancer including brain, eye, mouth, head and neck, breast, lungs, colon and prostate * Include contributions from authors in 5 different disciplines * Provides a valuable educational tool for medical informatics
Section 1 The Clinical Problem. -- THE PREDICTIVE VALUE OF DETAILED HISTOLOGICAL STAGING OF SURGICAL RESECTION SPECIMENS IN ORAL CANCER -- Chapter 1: The predictive value of detailed histological staging of surgical resection specimens in oral cancer. -- J. Woolgar -- Liverpool Dental School, UK -- Chapter 2: Survival after Treatment of Intraocular Melanoma. -- B.E. Damato, A.F.G. Taktak, -- Royal Liverpool University Hospital, UK -- Chapter 3: Recent developments in relative survival analysis. -- T. Hakulinen, T.A. Dyba, -- Finnish Cancer Registry -- Section 2 Biological and Genetic Factors -- Chapter 4: Environmental and genetic risk factors of lung cancer. -- A. Cassidy, J.K. Field, -- University of Liverpool, UK -- Chapter 5: Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer. -- A.S. Jones, -- University Hospital Aintree, UK -- Section 3 Mathematical Background of Prognostic Models --
- Chapter 6: Flexible hazard modelling for outcome prediction in cancer -- perspectives for the use of bioinformatics knowledge. -- E. Biganzoli1, P. Boracchi2 -- 1 Istituto Nazionale per lo Studio e la Cura dei Tumori, Milano, Italy -- 2 Universit̉ degli Studi di Milano, Milano, Italy -- Chapter 7: Information geometry for survival analysis and feature selection by neural networks. -- A. Eleuteri 1,2, R. Tagliaferri 3,4, L. Milano 1,2, M. De Laurentiis 1 -- 1Universit̉ di Napoli, Italy -- 2INFN sez. Napoli, Italy -- 3Universit'a di Salerno, Italy -- 4INFN sez. distaccata di Salerno, Italy -- Chapter 8: Artificial neural networks used in the survival analysis of breast cancer patients: A node negative study. -- C.T.C. Arsene, P.J. Lisboa, -- Liverpool John Moores University, UK -- Section 4 Application of Machine Learning Methods -- Chapter 9: The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients. -- A. Marchevsky, --
- Cedars-Sinai Medical Center, Los Angeles, USA -- Chapter 10: Machine learning contribution to solve prognosis medical problems. -- F. Baronti, A. Micheli, A. Passaro, A. Starita, -- University of Pisa, Italy -- Chapter 11: Classification of brain tumours by pattern recognition of Magnetic Resonance Imaging and Spectroscopic data. -- A. Devos1, S. Van Huffel1 A.W. Simonetti1, M. van der Graaf2, A. Heerschap2, L.M.C. Buydens3 -- 1Katholieke Universiteit Leuven, Belgium -- 2University Nijmegen Medical Centre, The Netherlands -- 3Radboud University Nijmegen, The Netherlands -- -- Chapter 12: Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data. -- M. Kokuer1, R.N.G. Naguib1, P. Jancovic2, H.B. Younghusband3, R. Green3 -- 1Coventry University, UK -- 2University of Birmingham, UK -- 3University of Newfoundland, Canada -- Chapter 13: The impact of microarray technology in brain cancer. -- M. Kounelakis1, M. Zervakis1, X. Kotsiakis2 --
- 1Technical University of Crete, GREECE -- 2District Hospital of Chania, GREECE -- Section 5 Dissemination of Information -- Chapter 14: The web and the new generation of medical information. -- J.M. Fonseca, A.D. Mora, P. Barroso -- University of Lisbon, Portugal -- Chapter 15: Geoconda: a web environment for multi-centre research. -- C. Setzkorn, A.F.G. Taktak, B.E. Damato -- Royal Liverpool University Hospital, Liverpool, UK -- Chapter 16: The development and execution of medical prediction models. -- M.W. Kattan1, M. G̲nen2, P.T. Scardino2 -- 1The Cleveland Clinic Fondation, Cleveland, USA -- 2Memorial Sloan-Kettering Cancer Center, New York, USA.
Includes bibliographical references and index
The predictive value of detailed histological staging of surgical resection specimens in oral cancer -- Survival after treatment of intraocular melanoma -- Recent developments in relative survival analysis -- Environmental and genetic risk factors of lung cancer -- Chaos, cancer, the cellular operating system and the prediction of survival in head and neck cancer -- Flexible hazard modelling for outcome prediction in cancer: perspectives for the use of bioinformatics knowledge -- Information geometry for survival analysis and feature selection by neural networks -- Artificial neural networks used in the survival analysis of breast cancer patients: a node-negative study -- The use of artificial neural networks for the diagnosis and estimation of prognosis in cancer patients -- Machine learning contribution to solve prognostic medical problems -- Classification of brain tumors by pattern recognition of magnetic resonance imaging and spectroscopic data -- Towards automatic risk analysis for hereditary non-polyposis colorectal cancer based on pedigree data -- The impact of microarray technology in brain cancer -- The web and the new generation of medical information systems -- Geoconda: a web environment for multi-centre research -- The development and execution of medical prediction models
MEDICAL / Oncology bisacsh
HEALTH & FITNESS / Diseases / Cancer bisacsh
Cancer / Diagnosis fast
Cancer / Prognosis fast
Neural networks (Computer science) fast
Survival analysis (Biometry) fast
Neoplasms / diagnosis
Prognosis
Medizin
Cancer Diagnosis
Cancer Prognosis
Neural networks (Computer science)
Survival analysis (Biometry)
Taktak, Azzam F. G. Sonstige oth
Fisher, Anthony C. Sonstige oth
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185784 Aggregator Volltext
spellingShingle Outcome prediction in cancer
MEDICAL / Oncology bisacsh
HEALTH & FITNESS / Diseases / Cancer bisacsh
Cancer / Diagnosis fast
Cancer / Prognosis fast
Neural networks (Computer science) fast
Survival analysis (Biometry) fast
Neoplasms / diagnosis
Prognosis
Medizin
Cancer Diagnosis
Cancer Prognosis
Neural networks (Computer science)
Survival analysis (Biometry)
title Outcome prediction in cancer
title_auth Outcome prediction in cancer
title_exact_search Outcome prediction in cancer
title_full Outcome prediction in cancer editors, Azzam F.G. Taktak and Anthony C. Fisher
title_fullStr Outcome prediction in cancer editors, Azzam F.G. Taktak and Anthony C. Fisher
title_full_unstemmed Outcome prediction in cancer editors, Azzam F.G. Taktak and Anthony C. Fisher
title_short Outcome prediction in cancer
title_sort outcome prediction in cancer
topic MEDICAL / Oncology bisacsh
HEALTH & FITNESS / Diseases / Cancer bisacsh
Cancer / Diagnosis fast
Cancer / Prognosis fast
Neural networks (Computer science) fast
Survival analysis (Biometry) fast
Neoplasms / diagnosis
Prognosis
Medizin
Cancer Diagnosis
Cancer Prognosis
Neural networks (Computer science)
Survival analysis (Biometry)
topic_facet MEDICAL / Oncology
HEALTH & FITNESS / Diseases / Cancer
Cancer / Diagnosis
Cancer / Prognosis
Neural networks (Computer science)
Survival analysis (Biometry)
Neoplasms / diagnosis
Prognosis
Medizin
Cancer Diagnosis
Cancer Prognosis
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=185784
work_keys_str_mv AT taktakazzamfg outcomepredictionincancer
AT fisheranthonyc outcomepredictionincancer