Regularization Theory for Ill-posed Problems Selected Topics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lu, Shuai (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin De Gruyter 2013
Schriftenreihe:Inverse and ill-posed problems series
Schlagworte:
Online-Zugang:DE-1046
DE-1047
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV043037066
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151120s2013 xx o|||| 00||| eng d
020 |a 3110286467  |9 3-11-028646-7 
020 |a 3110286491  |9 3-11-028649-1 
020 |a 9783110286465  |9 978-3-11-028646-5 
020 |a 9783110286496  |9 978-3-11-028649-6 
035 |a (OCoLC)858762149 
035 |a (DE-599)BVBBV043037066 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 518.53 
082 0 |a 518/.53 
100 1 |a Lu, Shuai  |e Verfasser  |4 aut 
245 1 0 |a Regularization Theory for Ill-posed Problems  |b Selected Topics 
264 1 |a Berlin  |b De Gruyter  |c 2013 
300 |a 1 online resource (304 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Inverse and ill-posed problems series 
500 |a Print version record. - 3.2.6 Generalization in the case of more than two regularization parameters 
505 8 |a Preface; 1 An introduction using classical examples; 1.1 Numerical differentiation. First look at the problem of regularization. The balancing principle; 1.1.1 Finite-difference formulae; 1.1.2 Finite-difference formulae for nonexact data. A priori choice of the stepsize; 1.1.3 A posteriori choice of the stepsize; 1.1.4 Numerical illustration; 1.1.5 The balancing principle in a general framework; 1.2 Stable summation of orthogonal series with noisy coefficients. Deterministic and stochastic noise models. Description of smoothness properties; 1.2.1 Summation methods 
505 8 |a 1.2.2 Deterministic noise model1.2.3 Stochastic noise model; 1.2.4 Smoothness associated with a basis; 1.2.5 Approximation and stability properties of -methods; 1.2.6 Error bounds; 1.3 The elliptic Cauchy problem and regularization by discretization; 1.3.1 Natural linearization of the elliptic Cauchy problem; 1.3.2 Regularization by discretization; 1.3.3 Application in detecting corrosion; 2 Basics of single parameter regularization schemes; 2.1 Simple example for motivation; 2.2 Essentially ill-posed linear operator equations. Least-squares solution. General view on regularization 
505 8 |a 2.3 Smoothness in the context of the problem. Benchmark accuracy levels for deterministic and stochastic data noise models2.3.1 The best possible accuracy for the deterministic noise model; 2.3.2 The best possible accuracy for the Gaussian white noise model; 2.4 Optimal order and the saturation of regularization methods in Hilbert spaces; 2.5 Changing the penalty term for variance reduction. Regularization in Hilbert scales; 2.6 Estimation of linear functionals from indirect noisy observations; 2.7 Regularization by finite-dimensional approximation 
505 8 |a 2.8 Model selection based on indirect observation in Gaussian white noise2.8.1 Linear models given by least-squares methods; 2.8.2 Operator monotone functions; 2.8.3 The problem of model selection (continuation); 2.9 A warning example: an operator equation formulation is not always adequate (numerical differentiation revisited); 2.9.1 Numerical differentiation in variable Hilbert scales associated with designs; 2.9.2 Error bounds in L2; 2.9.3 Adaptation to the unknown bound of the approximation error; 2.9.4 Numerical differentiation in the space of continuous functions 
505 8 |a 2.9.5 Relation to the Savitzky-Golay method. Numerical examples3 Multiparameter regularization; 3.1 When do we really need multiparameter regularization?; 3.2 Multiparameter discrepancy principle; 3.2.1 Model function based on the multiparameter discrepancy principle; 3.2.2 A use of the model function to approximate one set of parameters satisfying the discrepancy principle; 3.2.3 Properties of the model function approximation; 3.2.4 Discrepancy curve and the convergence analysis; 3.2.5 Heuristic algorithm for the model function approximation of the multiparameter discrepancy principle 
505 8 |a Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects. He demonstrates new, differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory, such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs 
650 4 |a Numerical analysis / Improperly posed problems 
650 7 |a MATHEMATICS / Numerical Analysis  |2 bisacsh 
650 7 |a Numerical analysis / Improperly posed problems  |2 fast 
650 7 |a Numerical differentiation  |2 fast 
650 4 |a Numerical differentiation 
650 4 |a Numerical analysis  |x Improperly posed problems 
650 0 7 |a Inkorrekt gestelltes Problem  |0 (DE-588)4186951-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Regularisierungsverfahren  |0 (DE-588)4846428-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Inverses Problem  |0 (DE-588)4125161-1  |2 gnd  |9 rswk-swf 
689 0 0 |a Inverses Problem  |0 (DE-588)4125161-1  |D s 
689 0 1 |a Inkorrekt gestelltes Problem  |0 (DE-588)4186951-5  |D s 
689 0 2 |a Regularisierungsverfahren  |0 (DE-588)4846428-4  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Pereverzev, Sergei V.  |e Sonstige  |4 oth 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Lu, Shuai  |t Regularization Theory for Ill-posed Problems : Selected Topics 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641765  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028461714 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641765  |l DE-1046  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641765  |l DE-1047  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1819295280994975744
any_adam_object
author Lu, Shuai
author_facet Lu, Shuai
author_role aut
author_sort Lu, Shuai
author_variant s l sl
building Verbundindex
bvnumber BV043037066
collection ZDB-4-EBA
contents Preface; 1 An introduction using classical examples; 1.1 Numerical differentiation. First look at the problem of regularization. The balancing principle; 1.1.1 Finite-difference formulae; 1.1.2 Finite-difference formulae for nonexact data. A priori choice of the stepsize; 1.1.3 A posteriori choice of the stepsize; 1.1.4 Numerical illustration; 1.1.5 The balancing principle in a general framework; 1.2 Stable summation of orthogonal series with noisy coefficients. Deterministic and stochastic noise models. Description of smoothness properties; 1.2.1 Summation methods
1.2.2 Deterministic noise model1.2.3 Stochastic noise model; 1.2.4 Smoothness associated with a basis; 1.2.5 Approximation and stability properties of -methods; 1.2.6 Error bounds; 1.3 The elliptic Cauchy problem and regularization by discretization; 1.3.1 Natural linearization of the elliptic Cauchy problem; 1.3.2 Regularization by discretization; 1.3.3 Application in detecting corrosion; 2 Basics of single parameter regularization schemes; 2.1 Simple example for motivation; 2.2 Essentially ill-posed linear operator equations. Least-squares solution. General view on regularization
2.3 Smoothness in the context of the problem. Benchmark accuracy levels for deterministic and stochastic data noise models2.3.1 The best possible accuracy for the deterministic noise model; 2.3.2 The best possible accuracy for the Gaussian white noise model; 2.4 Optimal order and the saturation of regularization methods in Hilbert spaces; 2.5 Changing the penalty term for variance reduction. Regularization in Hilbert scales; 2.6 Estimation of linear functionals from indirect noisy observations; 2.7 Regularization by finite-dimensional approximation
2.8 Model selection based on indirect observation in Gaussian white noise2.8.1 Linear models given by least-squares methods; 2.8.2 Operator monotone functions; 2.8.3 The problem of model selection (continuation); 2.9 A warning example: an operator equation formulation is not always adequate (numerical differentiation revisited); 2.9.1 Numerical differentiation in variable Hilbert scales associated with designs; 2.9.2 Error bounds in L2; 2.9.3 Adaptation to the unknown bound of the approximation error; 2.9.4 Numerical differentiation in the space of continuous functions
2.9.5 Relation to the Savitzky-Golay method. Numerical examples3 Multiparameter regularization; 3.1 When do we really need multiparameter regularization?; 3.2 Multiparameter discrepancy principle; 3.2.1 Model function based on the multiparameter discrepancy principle; 3.2.2 A use of the model function to approximate one set of parameters satisfying the discrepancy principle; 3.2.3 Properties of the model function approximation; 3.2.4 Discrepancy curve and the convergence analysis; 3.2.5 Heuristic algorithm for the model function approximation of the multiparameter discrepancy principle
Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects. He demonstrates new, differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory, such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs
ctrlnum (OCoLC)858762149
(DE-599)BVBBV043037066
dewey-full 518.53
518/.53
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 518 - Numerical analysis
dewey-raw 518.53
518/.53
dewey-search 518.53
518/.53
dewey-sort 3518.53
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>06189nam a2200649zc 4500</leader><controlfield tag="001">BV043037066</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2013 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110286467</subfield><subfield code="9">3-11-028646-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">3110286491</subfield><subfield code="9">3-11-028649-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110286465</subfield><subfield code="9">978-3-11-028646-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783110286496</subfield><subfield code="9">978-3-11-028649-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)858762149</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043037066</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518.53</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518/.53</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lu, Shuai</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Regularization Theory for Ill-posed Problems</subfield><subfield code="b">Selected Topics</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin</subfield><subfield code="b">De Gruyter</subfield><subfield code="c">2013</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (304 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Inverse and ill-posed problems series</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record. - 3.2.6 Generalization in the case of more than two regularization parameters</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Preface; 1 An introduction using classical examples; 1.1 Numerical differentiation. First look at the problem of regularization. The balancing principle; 1.1.1 Finite-difference formulae; 1.1.2 Finite-difference formulae for nonexact data. A priori choice of the stepsize; 1.1.3 A posteriori choice of the stepsize; 1.1.4 Numerical illustration; 1.1.5 The balancing principle in a general framework; 1.2 Stable summation of orthogonal series with noisy coefficients. Deterministic and stochastic noise models. Description of smoothness properties; 1.2.1 Summation methods</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">1.2.2 Deterministic noise model1.2.3 Stochastic noise model; 1.2.4 Smoothness associated with a basis; 1.2.5 Approximation and stability properties of -methods; 1.2.6 Error bounds; 1.3 The elliptic Cauchy problem and regularization by discretization; 1.3.1 Natural linearization of the elliptic Cauchy problem; 1.3.2 Regularization by discretization; 1.3.3 Application in detecting corrosion; 2 Basics of single parameter regularization schemes; 2.1 Simple example for motivation; 2.2 Essentially ill-posed linear operator equations. Least-squares solution. General view on regularization</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.3 Smoothness in the context of the problem. Benchmark accuracy levels for deterministic and stochastic data noise models2.3.1 The best possible accuracy for the deterministic noise model; 2.3.2 The best possible accuracy for the Gaussian white noise model; 2.4 Optimal order and the saturation of regularization methods in Hilbert spaces; 2.5 Changing the penalty term for variance reduction. Regularization in Hilbert scales; 2.6 Estimation of linear functionals from indirect noisy observations; 2.7 Regularization by finite-dimensional approximation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.8 Model selection based on indirect observation in Gaussian white noise2.8.1 Linear models given by least-squares methods; 2.8.2 Operator monotone functions; 2.8.3 The problem of model selection (continuation); 2.9 A warning example: an operator equation formulation is not always adequate (numerical differentiation revisited); 2.9.1 Numerical differentiation in variable Hilbert scales associated with designs; 2.9.2 Error bounds in L2; 2.9.3 Adaptation to the unknown bound of the approximation error; 2.9.4 Numerical differentiation in the space of continuous functions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.9.5 Relation to the Savitzky-Golay method. Numerical examples3 Multiparameter regularization; 3.1 When do we really need multiparameter regularization?; 3.2 Multiparameter discrepancy principle; 3.2.1 Model function based on the multiparameter discrepancy principle; 3.2.2 A use of the model function to approximate one set of parameters satisfying the discrepancy principle; 3.2.3 Properties of the model function approximation; 3.2.4 Discrepancy curve and the convergence analysis; 3.2.5 Heuristic algorithm for the model function approximation of the multiparameter discrepancy principle</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects. He demonstrates new, differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory, such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis / Improperly posed problems</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Numerical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical analysis / Improperly posed problems</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Numerical differentiation</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical differentiation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield><subfield code="x">Improperly posed problems</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inkorrekt gestelltes Problem</subfield><subfield code="0">(DE-588)4186951-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Regularisierungsverfahren</subfield><subfield code="0">(DE-588)4846428-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Inverses Problem</subfield><subfield code="0">(DE-588)4125161-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Inkorrekt gestelltes Problem</subfield><subfield code="0">(DE-588)4186951-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Regularisierungsverfahren</subfield><subfield code="0">(DE-588)4846428-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pereverzev, Sergei V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Lu, Shuai</subfield><subfield code="t">Regularization Theory for Ill-posed Problems : Selected Topics</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=641765</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028461714</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=641765</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=641765</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043037066
illustrated Not Illustrated
indexdate 2024-12-24T04:39:43Z
institution BVB
isbn 3110286467
3110286491
9783110286465
9783110286496
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028461714
oclc_num 858762149
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 online resource (304 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher De Gruyter
record_format marc
series2 Inverse and ill-posed problems series
spelling Lu, Shuai Verfasser aut
Regularization Theory for Ill-posed Problems Selected Topics
Berlin De Gruyter 2013
1 online resource (304 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Inverse and ill-posed problems series
Print version record. - 3.2.6 Generalization in the case of more than two regularization parameters
Preface; 1 An introduction using classical examples; 1.1 Numerical differentiation. First look at the problem of regularization. The balancing principle; 1.1.1 Finite-difference formulae; 1.1.2 Finite-difference formulae for nonexact data. A priori choice of the stepsize; 1.1.3 A posteriori choice of the stepsize; 1.1.4 Numerical illustration; 1.1.5 The balancing principle in a general framework; 1.2 Stable summation of orthogonal series with noisy coefficients. Deterministic and stochastic noise models. Description of smoothness properties; 1.2.1 Summation methods
1.2.2 Deterministic noise model1.2.3 Stochastic noise model; 1.2.4 Smoothness associated with a basis; 1.2.5 Approximation and stability properties of -methods; 1.2.6 Error bounds; 1.3 The elliptic Cauchy problem and regularization by discretization; 1.3.1 Natural linearization of the elliptic Cauchy problem; 1.3.2 Regularization by discretization; 1.3.3 Application in detecting corrosion; 2 Basics of single parameter regularization schemes; 2.1 Simple example for motivation; 2.2 Essentially ill-posed linear operator equations. Least-squares solution. General view on regularization
2.3 Smoothness in the context of the problem. Benchmark accuracy levels for deterministic and stochastic data noise models2.3.1 The best possible accuracy for the deterministic noise model; 2.3.2 The best possible accuracy for the Gaussian white noise model; 2.4 Optimal order and the saturation of regularization methods in Hilbert spaces; 2.5 Changing the penalty term for variance reduction. Regularization in Hilbert scales; 2.6 Estimation of linear functionals from indirect noisy observations; 2.7 Regularization by finite-dimensional approximation
2.8 Model selection based on indirect observation in Gaussian white noise2.8.1 Linear models given by least-squares methods; 2.8.2 Operator monotone functions; 2.8.3 The problem of model selection (continuation); 2.9 A warning example: an operator equation formulation is not always adequate (numerical differentiation revisited); 2.9.1 Numerical differentiation in variable Hilbert scales associated with designs; 2.9.2 Error bounds in L2; 2.9.3 Adaptation to the unknown bound of the approximation error; 2.9.4 Numerical differentiation in the space of continuous functions
2.9.5 Relation to the Savitzky-Golay method. Numerical examples3 Multiparameter regularization; 3.1 When do we really need multiparameter regularization?; 3.2 Multiparameter discrepancy principle; 3.2.1 Model function based on the multiparameter discrepancy principle; 3.2.2 A use of the model function to approximate one set of parameters satisfying the discrepancy principle; 3.2.3 Properties of the model function approximation; 3.2.4 Discrepancy curve and the convergence analysis; 3.2.5 Heuristic algorithm for the model function approximation of the multiparameter discrepancy principle
Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects. He demonstrates new, differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory, such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs
Numerical analysis / Improperly posed problems
MATHEMATICS / Numerical Analysis bisacsh
Numerical analysis / Improperly posed problems fast
Numerical differentiation fast
Numerical differentiation
Numerical analysis Improperly posed problems
Inkorrekt gestelltes Problem (DE-588)4186951-5 gnd rswk-swf
Regularisierungsverfahren (DE-588)4846428-4 gnd rswk-swf
Inverses Problem (DE-588)4125161-1 gnd rswk-swf
Inverses Problem (DE-588)4125161-1 s
Inkorrekt gestelltes Problem (DE-588)4186951-5 s
Regularisierungsverfahren (DE-588)4846428-4 s
1\p DE-604
Pereverzev, Sergei V. Sonstige oth
Erscheint auch als Druck-Ausgabe Lu, Shuai Regularization Theory for Ill-posed Problems : Selected Topics
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641765 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Lu, Shuai
Regularization Theory for Ill-posed Problems Selected Topics
Preface; 1 An introduction using classical examples; 1.1 Numerical differentiation. First look at the problem of regularization. The balancing principle; 1.1.1 Finite-difference formulae; 1.1.2 Finite-difference formulae for nonexact data. A priori choice of the stepsize; 1.1.3 A posteriori choice of the stepsize; 1.1.4 Numerical illustration; 1.1.5 The balancing principle in a general framework; 1.2 Stable summation of orthogonal series with noisy coefficients. Deterministic and stochastic noise models. Description of smoothness properties; 1.2.1 Summation methods
1.2.2 Deterministic noise model1.2.3 Stochastic noise model; 1.2.4 Smoothness associated with a basis; 1.2.5 Approximation and stability properties of -methods; 1.2.6 Error bounds; 1.3 The elliptic Cauchy problem and regularization by discretization; 1.3.1 Natural linearization of the elliptic Cauchy problem; 1.3.2 Regularization by discretization; 1.3.3 Application in detecting corrosion; 2 Basics of single parameter regularization schemes; 2.1 Simple example for motivation; 2.2 Essentially ill-posed linear operator equations. Least-squares solution. General view on regularization
2.3 Smoothness in the context of the problem. Benchmark accuracy levels for deterministic and stochastic data noise models2.3.1 The best possible accuracy for the deterministic noise model; 2.3.2 The best possible accuracy for the Gaussian white noise model; 2.4 Optimal order and the saturation of regularization methods in Hilbert spaces; 2.5 Changing the penalty term for variance reduction. Regularization in Hilbert scales; 2.6 Estimation of linear functionals from indirect noisy observations; 2.7 Regularization by finite-dimensional approximation
2.8 Model selection based on indirect observation in Gaussian white noise2.8.1 Linear models given by least-squares methods; 2.8.2 Operator monotone functions; 2.8.3 The problem of model selection (continuation); 2.9 A warning example: an operator equation formulation is not always adequate (numerical differentiation revisited); 2.9.1 Numerical differentiation in variable Hilbert scales associated with designs; 2.9.2 Error bounds in L2; 2.9.3 Adaptation to the unknown bound of the approximation error; 2.9.4 Numerical differentiation in the space of continuous functions
2.9.5 Relation to the Savitzky-Golay method. Numerical examples3 Multiparameter regularization; 3.1 When do we really need multiparameter regularization?; 3.2 Multiparameter discrepancy principle; 3.2.1 Model function based on the multiparameter discrepancy principle; 3.2.2 A use of the model function to approximate one set of parameters satisfying the discrepancy principle; 3.2.3 Properties of the model function approximation; 3.2.4 Discrepancy curve and the convergence analysis; 3.2.5 Heuristic algorithm for the model function approximation of the multiparameter discrepancy principle
Thismonograph is a valuable contribution to thehighly topical and extremly productive field ofregularisationmethods for inverse and ill-posed problems. The author is an internationally outstanding and acceptedmathematicianin this field. In his book he offers a well-balanced mixtureof basic and innovative aspects. He demonstrates new, differentiatedviewpoints, and important examples for applications. The bookdemontrates thecurrent developments inthe field of regularization theory, such as multiparameter regularization and regularization in learning theory. The book is written for graduate and PhDs
Numerical analysis / Improperly posed problems
MATHEMATICS / Numerical Analysis bisacsh
Numerical analysis / Improperly posed problems fast
Numerical differentiation fast
Numerical differentiation
Numerical analysis Improperly posed problems
Inkorrekt gestelltes Problem (DE-588)4186951-5 gnd
Regularisierungsverfahren (DE-588)4846428-4 gnd
Inverses Problem (DE-588)4125161-1 gnd
subject_GND (DE-588)4186951-5
(DE-588)4846428-4
(DE-588)4125161-1
title Regularization Theory for Ill-posed Problems Selected Topics
title_auth Regularization Theory for Ill-posed Problems Selected Topics
title_exact_search Regularization Theory for Ill-posed Problems Selected Topics
title_full Regularization Theory for Ill-posed Problems Selected Topics
title_fullStr Regularization Theory for Ill-posed Problems Selected Topics
title_full_unstemmed Regularization Theory for Ill-posed Problems Selected Topics
title_short Regularization Theory for Ill-posed Problems
title_sort regularization theory for ill posed problems selected topics
title_sub Selected Topics
topic Numerical analysis / Improperly posed problems
MATHEMATICS / Numerical Analysis bisacsh
Numerical analysis / Improperly posed problems fast
Numerical differentiation fast
Numerical differentiation
Numerical analysis Improperly posed problems
Inkorrekt gestelltes Problem (DE-588)4186951-5 gnd
Regularisierungsverfahren (DE-588)4846428-4 gnd
Inverses Problem (DE-588)4125161-1 gnd
topic_facet Numerical analysis / Improperly posed problems
MATHEMATICS / Numerical Analysis
Numerical differentiation
Numerical analysis Improperly posed problems
Inkorrekt gestelltes Problem
Regularisierungsverfahren
Inverses Problem
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=641765
work_keys_str_mv AT lushuai regularizationtheoryforillposedproblemsselectedtopics
AT pereverzevsergeiv regularizationtheoryforillposedproblemsselectedtopics