Turbulent transport in magnetized plasmas
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Hackenssack, New Jersey ; Singapore
World Scientific Publishing Company
[2012]
|
Schlagworte: | |
Online-Zugang: | DE-1046 DE-1047 Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV043032181 | ||
003 | DE-604 | ||
005 | 20241108 | ||
007 | cr|uuu---uuuuu | ||
008 | 151120s2012 xx a||| o|||| 00||| eng d | ||
020 | |a 9789814383530 |9 978-981-4383-53-0 | ||
020 | |a 9789814383547 |c electronic bk. |9 978-981-4383-54-7 | ||
020 | |a 9814383538 |9 981-4383-53-8 | ||
020 | |a 9814383546 |c electronic bk. |9 981-4383-54-6 | ||
035 | |a (OCoLC)828792695 | ||
035 | |a (DE-599)BVBBV043032181 | ||
040 | |a DE-604 |b ger |e rda | ||
041 | 0 | |a eng | |
049 | |a DE-1046 |a DE-1047 | ||
082 | 0 | |a 530.44 | |
100 | 1 | |a Horton, Wendell |d 1942- |e Verfasser |0 (DE-588)1028331517 |4 aut | |
245 | 1 | 0 | |a Turbulent transport in magnetized plasmas |c Wendell Horton |
264 | 1 | |a Hackenssack, New Jersey ; Singapore |b World Scientific Publishing Company |c [2012] | |
264 | 4 | |c © 2012 | |
300 | |a 1 online resource (xvi, 501 pages) |b illustrations (some color) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Print version record | ||
505 | 8 | |a Foreword; Contents; 1. Basic Concepts and Historical Background; 1.1 Space and Astrophysics; 1.2 World War II, Teller 1952; 1.3 Controlled Nuclear Fusion; 1.4 Magnetic Confinement Conditions for Nuclear Fusion; 1.5 Nature of Plasma Turbulence; 1.6 Breakthrough with Tokamak Confinement; 1.7 Confinement Records Set in Early Tokamaks; 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR; 1.7.2 TFTR and the D-T fusion plasmas; 1.7.3 Third-generation tokamaks with international growth; 1.8 JET Record Fusion Power Experiments; References; 2. Alfven and Drift Waves in Plasmas | |
505 | 8 | |a 2.1 Low-Frequency Wave Dispersion Relations2.2 Reduction of the Kinetic Dispersion Relation; 2.3 Drift Waves; 2.4 Kinetic Alfven Waves; 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves; 2.5.1 Electrostatic drift waves; 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field; 2.7 Symmetries of the Drift Wave Eigenmodes; 2.8 Outgoing Wave Boundary Conditions; 2.8.1 Localized ion drift modes; 2.9 Ion Acoustic Wave Turbulence; 2.9.1 Electromagnetic scattering measurements of ion acoustic waves; 2.9.2 Laser scattering experiment in Helium plasma | |
505 | 8 | |a 2.9.3 Probe measurements of the two-point correlation functions2.9.4 Probe measurements of the spectrum and anomalous resistivity; 2.9.5 Drift wave spectral distributions; 2.9.6 Microwave scattering experiments in PLT; 2.10 Drift Waves and Transport in the TEXT Tokamak; 2.11 Drift Waves in Stellarators; References; 3. Mechanisms for Drift Waves; 3.1 Drift Wave Turbulence; 3.2 Drift Wave Mechanism; 3.3 Energy Bounds for Turbulence Amplitudes; 3.3.1 Density gradients; 3.3.2 Temperature gradients; 3.3.3 Drift wave eigenmodes in toroidal geometry | |
505 | 8 | |a 3.3.4 The effect of magnetic and Er shear on drift waves3.4 Weak Turbulence Theory for Drift Waves; 3.5 Ion Temperature Gradient Mode; 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models; References; 4. Two-Component Magnetohydrodynamics; 4.1 Collisional Transport Equations; 4.2 Current, Density and Temperature Gradient Driven Drift Modes; 4.2.1 Ion acoustic waves and the thermal mode; 4.2.2 Ion temperature gradient instability; 4.3 Closure Models for Coupled Chain of Fluid Moments; 4.3.1 Closure models for the chain of the fluid moments | |
505 | 8 | |a 4.3.1.1 Examples of heat flux problem in fluid closures4.4 Pressure Gradient Driven Instabilities; 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia; 4.4.2 Scaling of correlation length and time; 4.4.3 Magnetic fiutter thermal transport; 4.4.4 Electron inertia Ohm's law; 4.5 Momentum Stress Tensor Stability Analysis; 4.6 Kinetic Ballooning Mode Instability; References; 5. Laboratory Experiments for Drift Waves; 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles; 5.2 Discovery of Drift Waves in Early Q-Machine Experiments | |
505 | 8 | |a The book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th | |
650 | 7 | |a SCIENCE / Energy |2 bisacsh | |
650 | 7 | |a SCIENCE / Mechanics / General |2 bisacsh | |
650 | 7 | |a SCIENCE / Physics / General |2 bisacsh | |
650 | 4 | |a Plasma turbulence | |
650 | 4 | |a Plasma (Ionized gases) | |
650 | 4 | |a Transport theory | |
650 | 4 | |a Fluctuations (Physics) | |
650 | 4 | |a Magnetohydrodynamics | |
650 | 0 | 7 | |a Plasmatransport |0 (DE-588)4391328-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Magnetohydrodynamik |0 (DE-588)4130803-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Turbulente Strömung |0 (DE-588)4117265-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Plasmatransport |0 (DE-588)4391328-3 |D s |
689 | 0 | 1 | |a Turbulente Strömung |0 (DE-588)4117265-6 |D s |
689 | 0 | 2 | |a Magnetohydrodynamik |0 (DE-588)4130803-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
776 | 0 | 8 | |i Erscheint auch als |n Druck-Ausgabe |a Horton, C |t W. (Claude Wendell), 1942-. Turbulent transport in magnetized plasmas |
856 | 4 | 0 | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533855 |x Aggregator |3 Volltext |
912 | |a ZDB-4-EBA | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-028456832 | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533855 |l DE-1046 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext | |
966 | e | |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533855 |l DE-1047 |p ZDB-4-EBA |q FAW_PDA_EBA |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1819295274640605184 |
---|---|
any_adam_object | |
author | Horton, Wendell 1942- |
author_GND | (DE-588)1028331517 |
author_facet | Horton, Wendell 1942- |
author_role | aut |
author_sort | Horton, Wendell 1942- |
author_variant | w h wh |
building | Verbundindex |
bvnumber | BV043032181 |
collection | ZDB-4-EBA |
contents | Foreword; Contents; 1. Basic Concepts and Historical Background; 1.1 Space and Astrophysics; 1.2 World War II, Teller 1952; 1.3 Controlled Nuclear Fusion; 1.4 Magnetic Confinement Conditions for Nuclear Fusion; 1.5 Nature of Plasma Turbulence; 1.6 Breakthrough with Tokamak Confinement; 1.7 Confinement Records Set in Early Tokamaks; 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR; 1.7.2 TFTR and the D-T fusion plasmas; 1.7.3 Third-generation tokamaks with international growth; 1.8 JET Record Fusion Power Experiments; References; 2. Alfven and Drift Waves in Plasmas 2.1 Low-Frequency Wave Dispersion Relations2.2 Reduction of the Kinetic Dispersion Relation; 2.3 Drift Waves; 2.4 Kinetic Alfven Waves; 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves; 2.5.1 Electrostatic drift waves; 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field; 2.7 Symmetries of the Drift Wave Eigenmodes; 2.8 Outgoing Wave Boundary Conditions; 2.8.1 Localized ion drift modes; 2.9 Ion Acoustic Wave Turbulence; 2.9.1 Electromagnetic scattering measurements of ion acoustic waves; 2.9.2 Laser scattering experiment in Helium plasma 2.9.3 Probe measurements of the two-point correlation functions2.9.4 Probe measurements of the spectrum and anomalous resistivity; 2.9.5 Drift wave spectral distributions; 2.9.6 Microwave scattering experiments in PLT; 2.10 Drift Waves and Transport in the TEXT Tokamak; 2.11 Drift Waves in Stellarators; References; 3. Mechanisms for Drift Waves; 3.1 Drift Wave Turbulence; 3.2 Drift Wave Mechanism; 3.3 Energy Bounds for Turbulence Amplitudes; 3.3.1 Density gradients; 3.3.2 Temperature gradients; 3.3.3 Drift wave eigenmodes in toroidal geometry 3.3.4 The effect of magnetic and Er shear on drift waves3.4 Weak Turbulence Theory for Drift Waves; 3.5 Ion Temperature Gradient Mode; 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models; References; 4. Two-Component Magnetohydrodynamics; 4.1 Collisional Transport Equations; 4.2 Current, Density and Temperature Gradient Driven Drift Modes; 4.2.1 Ion acoustic waves and the thermal mode; 4.2.2 Ion temperature gradient instability; 4.3 Closure Models for Coupled Chain of Fluid Moments; 4.3.1 Closure models for the chain of the fluid moments 4.3.1.1 Examples of heat flux problem in fluid closures4.4 Pressure Gradient Driven Instabilities; 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia; 4.4.2 Scaling of correlation length and time; 4.4.3 Magnetic fiutter thermal transport; 4.4.4 Electron inertia Ohm's law; 4.5 Momentum Stress Tensor Stability Analysis; 4.6 Kinetic Ballooning Mode Instability; References; 5. Laboratory Experiments for Drift Waves; 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles; 5.2 Discovery of Drift Waves in Early Q-Machine Experiments The book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th |
ctrlnum | (OCoLC)828792695 (DE-599)BVBBV043032181 |
dewey-full | 530.44 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.44 |
dewey-search | 530.44 |
dewey-sort | 3530.44 |
dewey-tens | 530 - Physics |
discipline | Physik |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05741nam a2200649zc 4500</leader><controlfield tag="001">BV043032181</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20241108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s2012 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814383530</subfield><subfield code="9">978-981-4383-53-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789814383547</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">978-981-4383-54-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814383538</subfield><subfield code="9">981-4383-53-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9814383546</subfield><subfield code="c">electronic bk.</subfield><subfield code="9">981-4383-54-6</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)828792695</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043032181</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.44</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Horton, Wendell</subfield><subfield code="d">1942-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1028331517</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Turbulent transport in magnetized plasmas</subfield><subfield code="c">Wendell Horton</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Hackenssack, New Jersey ; Singapore</subfield><subfield code="b">World Scientific Publishing Company</subfield><subfield code="c">[2012]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2012</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xvi, 501 pages)</subfield><subfield code="b">illustrations (some color)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Foreword; Contents; 1. Basic Concepts and Historical Background; 1.1 Space and Astrophysics; 1.2 World War II, Teller 1952; 1.3 Controlled Nuclear Fusion; 1.4 Magnetic Confinement Conditions for Nuclear Fusion; 1.5 Nature of Plasma Turbulence; 1.6 Breakthrough with Tokamak Confinement; 1.7 Confinement Records Set in Early Tokamaks; 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR; 1.7.2 TFTR and the D-T fusion plasmas; 1.7.3 Third-generation tokamaks with international growth; 1.8 JET Record Fusion Power Experiments; References; 2. Alfven and Drift Waves in Plasmas</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.1 Low-Frequency Wave Dispersion Relations2.2 Reduction of the Kinetic Dispersion Relation; 2.3 Drift Waves; 2.4 Kinetic Alfven Waves; 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves; 2.5.1 Electrostatic drift waves; 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field; 2.7 Symmetries of the Drift Wave Eigenmodes; 2.8 Outgoing Wave Boundary Conditions; 2.8.1 Localized ion drift modes; 2.9 Ion Acoustic Wave Turbulence; 2.9.1 Electromagnetic scattering measurements of ion acoustic waves; 2.9.2 Laser scattering experiment in Helium plasma</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">2.9.3 Probe measurements of the two-point correlation functions2.9.4 Probe measurements of the spectrum and anomalous resistivity; 2.9.5 Drift wave spectral distributions; 2.9.6 Microwave scattering experiments in PLT; 2.10 Drift Waves and Transport in the TEXT Tokamak; 2.11 Drift Waves in Stellarators; References; 3. Mechanisms for Drift Waves; 3.1 Drift Wave Turbulence; 3.2 Drift Wave Mechanism; 3.3 Energy Bounds for Turbulence Amplitudes; 3.3.1 Density gradients; 3.3.2 Temperature gradients; 3.3.3 Drift wave eigenmodes in toroidal geometry</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">3.3.4 The effect of magnetic and Er shear on drift waves3.4 Weak Turbulence Theory for Drift Waves; 3.5 Ion Temperature Gradient Mode; 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models; References; 4. Two-Component Magnetohydrodynamics; 4.1 Collisional Transport Equations; 4.2 Current, Density and Temperature Gradient Driven Drift Modes; 4.2.1 Ion acoustic waves and the thermal mode; 4.2.2 Ion temperature gradient instability; 4.3 Closure Models for Coupled Chain of Fluid Moments; 4.3.1 Closure models for the chain of the fluid moments</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">4.3.1.1 Examples of heat flux problem in fluid closures4.4 Pressure Gradient Driven Instabilities; 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia; 4.4.2 Scaling of correlation length and time; 4.4.3 Magnetic fiutter thermal transport; 4.4.4 Electron inertia Ohm's law; 4.5 Momentum Stress Tensor Stability Analysis; 4.6 Kinetic Ballooning Mode Instability; References; 5. Laboratory Experiments for Drift Waves; 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles; 5.2 Discovery of Drift Waves in Early Q-Machine Experiments</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">The book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Energy</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Mechanics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">SCIENCE / Physics / General</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plasma (Ionized gases)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Transport theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluctuations (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetohydrodynamics</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Plasmatransport</subfield><subfield code="0">(DE-588)4391328-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Magnetohydrodynamik</subfield><subfield code="0">(DE-588)4130803-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Plasmatransport</subfield><subfield code="0">(DE-588)4391328-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Turbulente Strömung</subfield><subfield code="0">(DE-588)4117265-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Magnetohydrodynamik</subfield><subfield code="0">(DE-588)4130803-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Horton, C</subfield><subfield code="t">W. (Claude Wendell), 1942-. Turbulent transport in magnetized plasmas</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533855</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028456832</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533855</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533855</subfield><subfield code="l">DE-1047</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV043032181 |
illustrated | Illustrated |
indexdate | 2024-12-24T04:39:28Z |
institution | BVB |
isbn | 9789814383530 9789814383547 9814383538 9814383546 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-028456832 |
oclc_num | 828792695 |
open_access_boolean | |
owner | DE-1046 DE-1047 |
owner_facet | DE-1046 DE-1047 |
physical | 1 online resource (xvi, 501 pages) illustrations (some color) |
psigel | ZDB-4-EBA ZDB-4-EBA FAW_PDA_EBA |
publishDate | 2012 |
publishDateSearch | 2012 |
publishDateSort | 2012 |
publisher | World Scientific Publishing Company |
record_format | marc |
spelling | Horton, Wendell 1942- Verfasser (DE-588)1028331517 aut Turbulent transport in magnetized plasmas Wendell Horton Hackenssack, New Jersey ; Singapore World Scientific Publishing Company [2012] © 2012 1 online resource (xvi, 501 pages) illustrations (some color) txt rdacontent c rdamedia cr rdacarrier Print version record Foreword; Contents; 1. Basic Concepts and Historical Background; 1.1 Space and Astrophysics; 1.2 World War II, Teller 1952; 1.3 Controlled Nuclear Fusion; 1.4 Magnetic Confinement Conditions for Nuclear Fusion; 1.5 Nature of Plasma Turbulence; 1.6 Breakthrough with Tokamak Confinement; 1.7 Confinement Records Set in Early Tokamaks; 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR; 1.7.2 TFTR and the D-T fusion plasmas; 1.7.3 Third-generation tokamaks with international growth; 1.8 JET Record Fusion Power Experiments; References; 2. Alfven and Drift Waves in Plasmas 2.1 Low-Frequency Wave Dispersion Relations2.2 Reduction of the Kinetic Dispersion Relation; 2.3 Drift Waves; 2.4 Kinetic Alfven Waves; 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves; 2.5.1 Electrostatic drift waves; 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field; 2.7 Symmetries of the Drift Wave Eigenmodes; 2.8 Outgoing Wave Boundary Conditions; 2.8.1 Localized ion drift modes; 2.9 Ion Acoustic Wave Turbulence; 2.9.1 Electromagnetic scattering measurements of ion acoustic waves; 2.9.2 Laser scattering experiment in Helium plasma 2.9.3 Probe measurements of the two-point correlation functions2.9.4 Probe measurements of the spectrum and anomalous resistivity; 2.9.5 Drift wave spectral distributions; 2.9.6 Microwave scattering experiments in PLT; 2.10 Drift Waves and Transport in the TEXT Tokamak; 2.11 Drift Waves in Stellarators; References; 3. Mechanisms for Drift Waves; 3.1 Drift Wave Turbulence; 3.2 Drift Wave Mechanism; 3.3 Energy Bounds for Turbulence Amplitudes; 3.3.1 Density gradients; 3.3.2 Temperature gradients; 3.3.3 Drift wave eigenmodes in toroidal geometry 3.3.4 The effect of magnetic and Er shear on drift waves3.4 Weak Turbulence Theory for Drift Waves; 3.5 Ion Temperature Gradient Mode; 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models; References; 4. Two-Component Magnetohydrodynamics; 4.1 Collisional Transport Equations; 4.2 Current, Density and Temperature Gradient Driven Drift Modes; 4.2.1 Ion acoustic waves and the thermal mode; 4.2.2 Ion temperature gradient instability; 4.3 Closure Models for Coupled Chain of Fluid Moments; 4.3.1 Closure models for the chain of the fluid moments 4.3.1.1 Examples of heat flux problem in fluid closures4.4 Pressure Gradient Driven Instabilities; 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia; 4.4.2 Scaling of correlation length and time; 4.4.3 Magnetic fiutter thermal transport; 4.4.4 Electron inertia Ohm's law; 4.5 Momentum Stress Tensor Stability Analysis; 4.6 Kinetic Ballooning Mode Instability; References; 5. Laboratory Experiments for Drift Waves; 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles; 5.2 Discovery of Drift Waves in Early Q-Machine Experiments The book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Plasma turbulence Plasma (Ionized gases) Transport theory Fluctuations (Physics) Magnetohydrodynamics Plasmatransport (DE-588)4391328-3 gnd rswk-swf Magnetohydrodynamik (DE-588)4130803-7 gnd rswk-swf Turbulente Strömung (DE-588)4117265-6 gnd rswk-swf Plasmatransport (DE-588)4391328-3 s Turbulente Strömung (DE-588)4117265-6 s Magnetohydrodynamik (DE-588)4130803-7 s 1\p DE-604 Erscheint auch als Druck-Ausgabe Horton, C W. (Claude Wendell), 1942-. Turbulent transport in magnetized plasmas http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533855 Aggregator Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Horton, Wendell 1942- Turbulent transport in magnetized plasmas Foreword; Contents; 1. Basic Concepts and Historical Background; 1.1 Space and Astrophysics; 1.2 World War II, Teller 1952; 1.3 Controlled Nuclear Fusion; 1.4 Magnetic Confinement Conditions for Nuclear Fusion; 1.5 Nature of Plasma Turbulence; 1.6 Breakthrough with Tokamak Confinement; 1.7 Confinement Records Set in Early Tokamaks; 1.7.1 First generation tokamaks: Ormak, PLT, Alcator, ATC and TFR; 1.7.2 TFTR and the D-T fusion plasmas; 1.7.3 Third-generation tokamaks with international growth; 1.8 JET Record Fusion Power Experiments; References; 2. Alfven and Drift Waves in Plasmas 2.1 Low-Frequency Wave Dispersion Relations2.2 Reduction of the Kinetic Dispersion Relation; 2.3 Drift Waves; 2.4 Kinetic Alfven Waves; 2.5 Coupling of the Drift Wave, Ion-Acoustic and Shear Alfven Waves; 2.5.1 Electrostatic drift waves; 2.6 Drift Wave Eigenmodes in a Sheared Magnetic Field; 2.7 Symmetries of the Drift Wave Eigenmodes; 2.8 Outgoing Wave Boundary Conditions; 2.8.1 Localized ion drift modes; 2.9 Ion Acoustic Wave Turbulence; 2.9.1 Electromagnetic scattering measurements of ion acoustic waves; 2.9.2 Laser scattering experiment in Helium plasma 2.9.3 Probe measurements of the two-point correlation functions2.9.4 Probe measurements of the spectrum and anomalous resistivity; 2.9.5 Drift wave spectral distributions; 2.9.6 Microwave scattering experiments in PLT; 2.10 Drift Waves and Transport in the TEXT Tokamak; 2.11 Drift Waves in Stellarators; References; 3. Mechanisms for Drift Waves; 3.1 Drift Wave Turbulence; 3.2 Drift Wave Mechanism; 3.3 Energy Bounds for Turbulence Amplitudes; 3.3.1 Density gradients; 3.3.2 Temperature gradients; 3.3.3 Drift wave eigenmodes in toroidal geometry 3.3.4 The effect of magnetic and Er shear on drift waves3.4 Weak Turbulence Theory for Drift Waves; 3.5 Ion Temperature Gradient Mode; 3.6 Drift Waves Paradigms: Hasegawa-Mima and Hasegawa-Wakatani Models; References; 4. Two-Component Magnetohydrodynamics; 4.1 Collisional Transport Equations; 4.2 Current, Density and Temperature Gradient Driven Drift Modes; 4.2.1 Ion acoustic waves and the thermal mode; 4.2.2 Ion temperature gradient instability; 4.3 Closure Models for Coupled Chain of Fluid Moments; 4.3.1 Closure models for the chain of the fluid moments 4.3.1.1 Examples of heat flux problem in fluid closures4.4 Pressure Gradient Driven Instabilities; 4.4.1 Scale invariance properties arising from an Ohm's law with electron inertia; 4.4.2 Scaling of correlation length and time; 4.4.3 Magnetic fiutter thermal transport; 4.4.4 Electron inertia Ohm's law; 4.5 Momentum Stress Tensor Stability Analysis; 4.6 Kinetic Ballooning Mode Instability; References; 5. Laboratory Experiments for Drift Waves; 5.1 Basic Laboratory Experiments for Drift Waves with Uniform Temperature Profiles; 5.2 Discovery of Drift Waves in Early Q-Machine Experiments The book explains how magnetized plasmas self-organize in states of electromagnetic turbulence that transports particles and energy out of the core plasma faster than anticipated by the fusion scientists designing magnetic confinement systems in the 20th SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Plasma turbulence Plasma (Ionized gases) Transport theory Fluctuations (Physics) Magnetohydrodynamics Plasmatransport (DE-588)4391328-3 gnd Magnetohydrodynamik (DE-588)4130803-7 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
subject_GND | (DE-588)4391328-3 (DE-588)4130803-7 (DE-588)4117265-6 |
title | Turbulent transport in magnetized plasmas |
title_auth | Turbulent transport in magnetized plasmas |
title_exact_search | Turbulent transport in magnetized plasmas |
title_full | Turbulent transport in magnetized plasmas Wendell Horton |
title_fullStr | Turbulent transport in magnetized plasmas Wendell Horton |
title_full_unstemmed | Turbulent transport in magnetized plasmas Wendell Horton |
title_short | Turbulent transport in magnetized plasmas |
title_sort | turbulent transport in magnetized plasmas |
topic | SCIENCE / Energy bisacsh SCIENCE / Mechanics / General bisacsh SCIENCE / Physics / General bisacsh Plasma turbulence Plasma (Ionized gases) Transport theory Fluctuations (Physics) Magnetohydrodynamics Plasmatransport (DE-588)4391328-3 gnd Magnetohydrodynamik (DE-588)4130803-7 gnd Turbulente Strömung (DE-588)4117265-6 gnd |
topic_facet | SCIENCE / Energy SCIENCE / Mechanics / General SCIENCE / Physics / General Plasma turbulence Plasma (Ionized gases) Transport theory Fluctuations (Physics) Magnetohydrodynamics Plasmatransport Magnetohydrodynamik Turbulente Strömung |
url | http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=533855 |
work_keys_str_mv | AT hortonwendell turbulenttransportinmagnetizedplasmas |