Convex analysis

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Rockafellar, R. Tyrrell 1935- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, N.J. Princeton University Press 1997, ©1970
Schriftenreihe:Princeton landmarks in mathematics and physics
Schlagworte:
Online-Zugang:FAW01
FAW02
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV043028177
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 151120s1997 |||| o||u| ||||||eng d
020 |a 0691015864  |9 0-691-01586-4 
020 |a 0691080690  |9 0-691-08069-0 
020 |a 1400873177  |9 1-4008-7317-7 
020 |a 9780691015866  |9 978-0-691-01586-6 
020 |a 9780691080697  |9 978-0-691-08069-7 
020 |a 9781400873173  |9 978-1-4008-7317-3 
035 |a (OCoLC)905969889 
035 |a (DE-599)BVBBV043028177 
040 |a DE-604  |b ger  |e rda 
041 0 |a eng 
049 |a DE-1046  |a DE-1047 
082 0 |a 515.64  |2 22 
100 1 |a Rockafellar, R. Tyrrell  |d 1935-  |e Verfasser  |4 aut 
245 1 0 |a Convex analysis  |c by R. Tyrrell Rockafellar 
264 1 |a Princeton, N.J.  |b Princeton University Press  |c 1997, ©1970 
300 |a 1 online resource (xviii, 451 pages) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Princeton landmarks in mathematics and physics 
500 |a "First published in the Princeton Mathematical Series in 1970"--Title page verso 
500 |a Print version record 
505 8 |a Cover; Title; Copright; Dedication; Preface; Contents; Introductory Remarks: a Guide for the Reader ; PART I: BASIC CONCEPTS; 1. Affine Sets; 2. Convex Sets and Cones ; 3. The Algebra of Convex Sets; 4. Convex Functions; 5. Functional Operations; PART II: TOPOLOGICAL PROPERTIES; 6. Relative Interiors of Convex Sets; 7. Closures of Convex Functions; 8. Recession Cones and Unboundedness; 9. Some Closedness Criteria; 10. Continuity of Convex Functions; PART III: DUALITY CORRESPONDENCES; 11. Separation Theorems; 12. Conjugates of Convex Functions; 13. Support Functions 
505 8 |a 14. Polars of Convex Sets15. Polars of Convex Functions; 16. DualOperations; PART IV: REPRESENTATION AND INEQUALITIES; 17. Caratheodory's Theorem; 18. Extreme Points and Faces of Convex Sets; 19. Polyhedral Convex Sets and Functions; 20. Some Applications of Polyhedral Convexity; 21. Helly's Theorem and Systems of Inequalities; 22. Linear Inequalities; PART V: DIFFERENTIAL THEORY; 23. Directional Derivatives and Subgradients ; 24. Differential Continuity and Monotonicity.; 25. Differentiability of Convex Functions; 26. The Legendre Transformation 
505 8 |a PART VI: CONSTRAINED EXTREMUM PROBLEMS27. The Minimum of a Convex Function; 28. Ordinary Convex Programs and Lagrange Multipliers; 29. Bifunctions and Generalized Convex Programs; 30. Adjoint Bifunctions and Dual Programs; 31. Fenchel's Duality Theorem; 32. The Maximum of a Convex Function ; PART VII: SADDLE-FUNCTIONS AND MINIMAX THEORY; 33. Saddle-Functions; 34. Closures and Equivalence Classes; 35. Continuity and Differentiability of Saddle-functions; 36. Minimax Problems; 37. Conjugate Saddle-functions and Minimax Theorems; PART VIII: CONVEX ALGEBRA 
505 8 |a 38. The Algebra of Bifunctions39. Convex Processes; Comments and References ; Bibliography; Index 
505 8 |a Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and 
650 7 |a Convex domains  |2 fast 
650 7 |a Convex functions  |2 fast 
650 7 |a Mathematical analysis  |2 fast 
650 7 |a Konvexe Analysis  |2 swd 
650 7 |a MATHEMATICS / Calculus  |2 bisacsh 
650 7 |a MATHEMATICS / Mathematical Analysis  |2 bisacsh 
650 7 |a MATHEMATICS / Optimization  |2 bisacsh 
650 4 |a Convex domains 
650 4 |a Mathematical analysis 
650 4 |a Mathematics 
650 4 |a Mathematik 
650 4 |a Convex domains 
650 4 |a Convex functions 
650 4 |a Mathematical analysis 
650 0 7 |a Konvexität  |0 (DE-588)4114284-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Konvexe Analysis  |0 (DE-588)4138566-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Konvexe Analysis  |0 (DE-588)4138566-4  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Konvexität  |0 (DE-588)4114284-6  |D s 
689 1 |8 2\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |a Rockafellar, R  |t Tyrrell, 1935-. Convex analysis 
856 4 0 |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=969057  |x Aggregator  |3 Volltext 
912 |a ZDB-4-EBA 
999 |a oai:aleph.bib-bvb.de:BVB01-028452829 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=969057  |l FAW01  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 
966 e |u http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=969057  |l FAW02  |p ZDB-4-EBA  |q FAW_PDA_EBA  |x Aggregator  |3 Volltext 

Datensatz im Suchindex

_version_ 1804175382683844608
any_adam_object
author Rockafellar, R. Tyrrell 1935-
author_facet Rockafellar, R. Tyrrell 1935-
author_role aut
author_sort Rockafellar, R. Tyrrell 1935-
author_variant r t r rt rtr
building Verbundindex
bvnumber BV043028177
collection ZDB-4-EBA
contents Cover; Title; Copright; Dedication; Preface; Contents; Introductory Remarks: a Guide for the Reader ; PART I: BASIC CONCEPTS; 1. Affine Sets; 2. Convex Sets and Cones ; 3. The Algebra of Convex Sets; 4. Convex Functions; 5. Functional Operations; PART II: TOPOLOGICAL PROPERTIES; 6. Relative Interiors of Convex Sets; 7. Closures of Convex Functions; 8. Recession Cones and Unboundedness; 9. Some Closedness Criteria; 10. Continuity of Convex Functions; PART III: DUALITY CORRESPONDENCES; 11. Separation Theorems; 12. Conjugates of Convex Functions; 13. Support Functions
14. Polars of Convex Sets15. Polars of Convex Functions; 16. DualOperations; PART IV: REPRESENTATION AND INEQUALITIES; 17. Caratheodory's Theorem; 18. Extreme Points and Faces of Convex Sets; 19. Polyhedral Convex Sets and Functions; 20. Some Applications of Polyhedral Convexity; 21. Helly's Theorem and Systems of Inequalities; 22. Linear Inequalities; PART V: DIFFERENTIAL THEORY; 23. Directional Derivatives and Subgradients ; 24. Differential Continuity and Monotonicity.; 25. Differentiability of Convex Functions; 26. The Legendre Transformation
PART VI: CONSTRAINED EXTREMUM PROBLEMS27. The Minimum of a Convex Function; 28. Ordinary Convex Programs and Lagrange Multipliers; 29. Bifunctions and Generalized Convex Programs; 30. Adjoint Bifunctions and Dual Programs; 31. Fenchel's Duality Theorem; 32. The Maximum of a Convex Function ; PART VII: SADDLE-FUNCTIONS AND MINIMAX THEORY; 33. Saddle-Functions; 34. Closures and Equivalence Classes; 35. Continuity and Differentiability of Saddle-functions; 36. Minimax Problems; 37. Conjugate Saddle-functions and Minimax Theorems; PART VIII: CONVEX ALGEBRA
38. The Algebra of Bifunctions39. Convex Processes; Comments and References ; Bibliography; Index
Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and
ctrlnum (OCoLC)905969889
(DE-599)BVBBV043028177
dewey-full 515.64
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.64
dewey-search 515.64
dewey-sort 3515.64
dewey-tens 510 - Mathematics
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05265nmm a2200745zc 4500</leader><controlfield tag="001">BV043028177</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">151120s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691015864</subfield><subfield code="9">0-691-01586-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">0691080690</subfield><subfield code="9">0-691-08069-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">1400873177</subfield><subfield code="9">1-4008-7317-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691015866</subfield><subfield code="9">978-0-691-01586-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9780691080697</subfield><subfield code="9">978-0-691-08069-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400873173</subfield><subfield code="9">978-1-4008-7317-3</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905969889</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV043028177</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rda</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1046</subfield><subfield code="a">DE-1047</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.64</subfield><subfield code="2">22</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rockafellar, R. Tyrrell</subfield><subfield code="d">1935-</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Convex analysis</subfield><subfield code="c">by R. Tyrrell Rockafellar</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">1997, ©1970</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 online resource (xviii, 451 pages)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Princeton landmarks in mathematics and physics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">"First published in the Princeton Mathematical Series in 1970"--Title page verso</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Print version record</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Cover; Title; Copright; Dedication; Preface; Contents; Introductory Remarks: a Guide for the Reader ; PART I: BASIC CONCEPTS; 1. Affine Sets; 2. Convex Sets and Cones ; 3. The Algebra of Convex Sets; 4. Convex Functions; 5. Functional Operations; PART II: TOPOLOGICAL PROPERTIES; 6. Relative Interiors of Convex Sets; 7. Closures of Convex Functions; 8. Recession Cones and Unboundedness; 9. Some Closedness Criteria; 10. Continuity of Convex Functions; PART III: DUALITY CORRESPONDENCES; 11. Separation Theorems; 12. Conjugates of Convex Functions; 13. Support Functions</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">14. Polars of Convex Sets15. Polars of Convex Functions; 16. DualOperations; PART IV: REPRESENTATION AND INEQUALITIES; 17. Caratheodory's Theorem; 18. Extreme Points and Faces of Convex Sets; 19. Polyhedral Convex Sets and Functions; 20. Some Applications of Polyhedral Convexity; 21. Helly's Theorem and Systems of Inequalities; 22. Linear Inequalities; PART V: DIFFERENTIAL THEORY; 23. Directional Derivatives and Subgradients ; 24. Differential Continuity and Monotonicity.; 25. Differentiability of Convex Functions; 26. The Legendre Transformation</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">PART VI: CONSTRAINED EXTREMUM PROBLEMS27. The Minimum of a Convex Function; 28. Ordinary Convex Programs and Lagrange Multipliers; 29. Bifunctions and Generalized Convex Programs; 30. Adjoint Bifunctions and Dual Programs; 31. Fenchel's Duality Theorem; 32. The Maximum of a Convex Function ; PART VII: SADDLE-FUNCTIONS AND MINIMAX THEORY; 33. Saddle-Functions; 34. Closures and Equivalence Classes; 35. Continuity and Differentiability of Saddle-functions; 36. Minimax Problems; 37. Conjugate Saddle-functions and Minimax Theorems; PART VIII: CONVEX ALGEBRA</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">38. The Algebra of Bifunctions39. Convex Processes; Comments and References ; Bibliography; Index</subfield></datafield><datafield tag="505" ind1="8" ind2=" "><subfield code="a">Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex domains</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Convex functions</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Mathematical analysis</subfield><subfield code="2">fast</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">Konvexe Analysis</subfield><subfield code="2">swd</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Calculus</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Mathematical Analysis</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="7"><subfield code="a">MATHEMATICS / Optimization</subfield><subfield code="2">bisacsh</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex domains</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Convex functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical analysis</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Konvexe Analysis</subfield><subfield code="0">(DE-588)4138566-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Konvexität</subfield><subfield code="0">(DE-588)4114284-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="a">Rockafellar, R</subfield><subfield code="t">Tyrrell, 1935-. Convex analysis</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=969057</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-4-EBA</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028452829</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=969057</subfield><subfield code="l">FAW01</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">http://search.ebscohost.com/login.aspx?direct=true&amp;scope=site&amp;db=nlebk&amp;db=nlabk&amp;AN=969057</subfield><subfield code="l">FAW02</subfield><subfield code="p">ZDB-4-EBA</subfield><subfield code="q">FAW_PDA_EBA</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV043028177
illustrated Not Illustrated
indexdate 2024-07-10T07:15:24Z
institution BVB
isbn 0691015864
0691080690
1400873177
9780691015866
9780691080697
9781400873173
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028452829
oclc_num 905969889
open_access_boolean
owner DE-1046
DE-1047
owner_facet DE-1046
DE-1047
physical 1 online resource (xviii, 451 pages)
psigel ZDB-4-EBA
ZDB-4-EBA FAW_PDA_EBA
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Princeton University Press
record_format marc
series2 Princeton landmarks in mathematics and physics
spelling Rockafellar, R. Tyrrell 1935- Verfasser aut
Convex analysis by R. Tyrrell Rockafellar
Princeton, N.J. Princeton University Press 1997, ©1970
1 online resource (xviii, 451 pages)
txt rdacontent
c rdamedia
cr rdacarrier
Princeton landmarks in mathematics and physics
"First published in the Princeton Mathematical Series in 1970"--Title page verso
Print version record
Cover; Title; Copright; Dedication; Preface; Contents; Introductory Remarks: a Guide for the Reader ; PART I: BASIC CONCEPTS; 1. Affine Sets; 2. Convex Sets and Cones ; 3. The Algebra of Convex Sets; 4. Convex Functions; 5. Functional Operations; PART II: TOPOLOGICAL PROPERTIES; 6. Relative Interiors of Convex Sets; 7. Closures of Convex Functions; 8. Recession Cones and Unboundedness; 9. Some Closedness Criteria; 10. Continuity of Convex Functions; PART III: DUALITY CORRESPONDENCES; 11. Separation Theorems; 12. Conjugates of Convex Functions; 13. Support Functions
14. Polars of Convex Sets15. Polars of Convex Functions; 16. DualOperations; PART IV: REPRESENTATION AND INEQUALITIES; 17. Caratheodory's Theorem; 18. Extreme Points and Faces of Convex Sets; 19. Polyhedral Convex Sets and Functions; 20. Some Applications of Polyhedral Convexity; 21. Helly's Theorem and Systems of Inequalities; 22. Linear Inequalities; PART V: DIFFERENTIAL THEORY; 23. Directional Derivatives and Subgradients ; 24. Differential Continuity and Monotonicity.; 25. Differentiability of Convex Functions; 26. The Legendre Transformation
PART VI: CONSTRAINED EXTREMUM PROBLEMS27. The Minimum of a Convex Function; 28. Ordinary Convex Programs and Lagrange Multipliers; 29. Bifunctions and Generalized Convex Programs; 30. Adjoint Bifunctions and Dual Programs; 31. Fenchel's Duality Theorem; 32. The Maximum of a Convex Function ; PART VII: SADDLE-FUNCTIONS AND MINIMAX THEORY; 33. Saddle-Functions; 34. Closures and Equivalence Classes; 35. Continuity and Differentiability of Saddle-functions; 36. Minimax Problems; 37. Conjugate Saddle-functions and Minimax Theorems; PART VIII: CONVEX ALGEBRA
38. The Algebra of Bifunctions39. Convex Processes; Comments and References ; Bibliography; Index
Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and
Convex domains fast
Convex functions fast
Mathematical analysis fast
Konvexe Analysis swd
MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
MATHEMATICS / Optimization bisacsh
Convex domains
Mathematical analysis
Mathematics
Mathematik
Convex functions
Konvexität (DE-588)4114284-6 gnd rswk-swf
Konvexe Analysis (DE-588)4138566-4 gnd rswk-swf
Konvexe Analysis (DE-588)4138566-4 s
1\p DE-604
Konvexität (DE-588)4114284-6 s
2\p DE-604
Erscheint auch als Druck-Ausgabe Rockafellar, R Tyrrell, 1935-. Convex analysis
http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=969057 Aggregator Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Rockafellar, R. Tyrrell 1935-
Convex analysis
Cover; Title; Copright; Dedication; Preface; Contents; Introductory Remarks: a Guide for the Reader ; PART I: BASIC CONCEPTS; 1. Affine Sets; 2. Convex Sets and Cones ; 3. The Algebra of Convex Sets; 4. Convex Functions; 5. Functional Operations; PART II: TOPOLOGICAL PROPERTIES; 6. Relative Interiors of Convex Sets; 7. Closures of Convex Functions; 8. Recession Cones and Unboundedness; 9. Some Closedness Criteria; 10. Continuity of Convex Functions; PART III: DUALITY CORRESPONDENCES; 11. Separation Theorems; 12. Conjugates of Convex Functions; 13. Support Functions
14. Polars of Convex Sets15. Polars of Convex Functions; 16. DualOperations; PART IV: REPRESENTATION AND INEQUALITIES; 17. Caratheodory's Theorem; 18. Extreme Points and Faces of Convex Sets; 19. Polyhedral Convex Sets and Functions; 20. Some Applications of Polyhedral Convexity; 21. Helly's Theorem and Systems of Inequalities; 22. Linear Inequalities; PART V: DIFFERENTIAL THEORY; 23. Directional Derivatives and Subgradients ; 24. Differential Continuity and Monotonicity.; 25. Differentiability of Convex Functions; 26. The Legendre Transformation
PART VI: CONSTRAINED EXTREMUM PROBLEMS27. The Minimum of a Convex Function; 28. Ordinary Convex Programs and Lagrange Multipliers; 29. Bifunctions and Generalized Convex Programs; 30. Adjoint Bifunctions and Dual Programs; 31. Fenchel's Duality Theorem; 32. The Maximum of a Convex Function ; PART VII: SADDLE-FUNCTIONS AND MINIMAX THEORY; 33. Saddle-Functions; 34. Closures and Equivalence Classes; 35. Continuity and Differentiability of Saddle-functions; 36. Minimax Problems; 37. Conjugate Saddle-functions and Minimax Theorems; PART VIII: CONVEX ALGEBRA
38. The Algebra of Bifunctions39. Convex Processes; Comments and References ; Bibliography; Index
Available for the first time in paperback, R. Tyrrell Rockafellar's classic study presents readers with a coherent branch of nonlinear mathematical analysis that is especially suited to the study of optimization problems. Rockafellar's theory differs from classical analysis in that differentiability assumptions are replaced by convexity assumptions. The topics treated in this volume include: systems of inequalities, the minimum or maximum of a convex function over a convex set, Lagrange multipliers, minimax theorems and duality, as well as basic results about the structure of convex sets and
Convex domains fast
Convex functions fast
Mathematical analysis fast
Konvexe Analysis swd
MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
MATHEMATICS / Optimization bisacsh
Convex domains
Mathematical analysis
Mathematics
Mathematik
Convex functions
Konvexität (DE-588)4114284-6 gnd
Konvexe Analysis (DE-588)4138566-4 gnd
subject_GND (DE-588)4114284-6
(DE-588)4138566-4
title Convex analysis
title_auth Convex analysis
title_exact_search Convex analysis
title_full Convex analysis by R. Tyrrell Rockafellar
title_fullStr Convex analysis by R. Tyrrell Rockafellar
title_full_unstemmed Convex analysis by R. Tyrrell Rockafellar
title_short Convex analysis
title_sort convex analysis
topic Convex domains fast
Convex functions fast
Mathematical analysis fast
Konvexe Analysis swd
MATHEMATICS / Calculus bisacsh
MATHEMATICS / Mathematical Analysis bisacsh
MATHEMATICS / Optimization bisacsh
Convex domains
Mathematical analysis
Mathematics
Mathematik
Convex functions
Konvexität (DE-588)4114284-6 gnd
Konvexe Analysis (DE-588)4138566-4 gnd
topic_facet Convex domains
Convex functions
Mathematical analysis
Konvexe Analysis
MATHEMATICS / Calculus
MATHEMATICS / Mathematical Analysis
MATHEMATICS / Optimization
Mathematics
Mathematik
Konvexität
url http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=969057
work_keys_str_mv AT rockafellarrtyrrell convexanalysis