Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bianchi, Luigi Amedeo (VerfasserIn), Blömker, Dirk 1970- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Augsburg Inst. für Mathematik 2015
Schriftenreihe:Preprint / Institut für Mathematik 2015,08
Schlagworte:
Online-Zugang:kostenfrei
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV042725361
003 DE-604
005 20160208
007 cr|uuu---uuuuu
008 150730s2015 xx o|||| 00||| eng d
024 7 |a urn:nbn:de:bvb:384-opus4-32139  |2 urn 
035 |a (OCoLC)915405650 
035 |a (DE-599)BVBBV042725361 
040 |a DE-604  |b ger  |e rakwb 
041 0 |a eng 
049 |a DE-384 
084 |a SI 910  |0 (DE-625)143212:  |2 rvk 
084 |a SK 540  |0 (DE-625)143245:  |2 rvk 
084 |a SK 820  |0 (DE-625)143258:  |2 rvk 
100 1 |a Bianchi, Luigi Amedeo  |e Verfasser  |4 aut 
245 1 0 |a Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory  |c Luigi Amedeo Bianchi ; Dirk Blömker 
264 1 |a Augsburg  |b Inst. für Mathematik  |c 2015 
300 |a 1 Online-Ressource 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Preprint / Institut für Mathematik  |v 2015,08 
650 0 7 |a Zufälliges Feld  |0 (DE-588)4191094-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Faltung  |g Mathematik  |0 (DE-588)4141470-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Modulationsgleichung  |0 (DE-588)4530674-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Amplitudengleichung  |0 (DE-588)4681810-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Stochastische partielle Differentialgleichung  |0 (DE-588)4135969-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Gauß-Prozess  |0 (DE-588)4156111-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Modulationsgleichung  |0 (DE-588)4530674-6  |D s 
689 0 1 |a Stochastische partielle Differentialgleichung  |0 (DE-588)4135969-0  |D s 
689 0 2 |a Amplitudengleichung  |0 (DE-588)4681810-8  |D s 
689 0 3 |a Faltung  |g Mathematik  |0 (DE-588)4141470-6  |D s 
689 0 4 |a Gauß-Prozess  |0 (DE-588)4156111-9  |D s 
689 0 5 |a Zufälliges Feld  |0 (DE-588)4191094-1  |D s 
689 0 |5 DE-604 
700 1 |a Blömker, Dirk  |d 1970-  |e Verfasser  |0 (DE-588)173390463  |4 aut 
810 2 |a Institut für Mathematik  |t Preprint  |v 2015,08  |w (DE-604)BV000015847  |9 2015,08 
856 4 0 |u http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/3213  |x Verlag  |z kostenfrei  |3 Volltext 
943 1 |a oai:aleph.bib-bvb.de:BVB01-028156478 

Datensatz im Suchindex

_version_ 1819294794478780416
any_adam_object
author Bianchi, Luigi Amedeo
Blömker, Dirk 1970-
author_GND (DE-588)173390463
author_facet Bianchi, Luigi Amedeo
Blömker, Dirk 1970-
author_role aut
aut
author_sort Bianchi, Luigi Amedeo
author_variant l a b la lab
d b db
building Verbundindex
bvnumber BV042725361
classification_rvk SI 910
SK 540
SK 820
ctrlnum (OCoLC)915405650
(DE-599)BVBBV042725361
discipline Mathematik
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02126nam a2200493 cb4500</leader><controlfield tag="001">BV042725361</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160208 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150730s2015 xx o|||| 00||| eng d</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">urn:nbn:de:bvb:384-opus4-32139</subfield><subfield code="2">urn</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)915405650</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042725361</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SI 910</subfield><subfield code="0">(DE-625)143212:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 540</subfield><subfield code="0">(DE-625)143245:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 820</subfield><subfield code="0">(DE-625)143258:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bianchi, Luigi Amedeo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory</subfield><subfield code="c">Luigi Amedeo Bianchi ; Dirk Blömker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Augsburg</subfield><subfield code="b">Inst. für Mathematik</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Preprint / Institut für Mathematik</subfield><subfield code="v">2015,08</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Zufälliges Feld</subfield><subfield code="0">(DE-588)4191094-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Faltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4141470-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulationsgleichung</subfield><subfield code="0">(DE-588)4530674-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Amplitudengleichung</subfield><subfield code="0">(DE-588)4681810-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Modulationsgleichung</subfield><subfield code="0">(DE-588)4530674-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastische partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4135969-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Amplitudengleichung</subfield><subfield code="0">(DE-588)4681810-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Faltung</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4141470-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Zufälliges Feld</subfield><subfield code="0">(DE-588)4191094-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Blömker, Dirk</subfield><subfield code="d">1970-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)173390463</subfield><subfield code="4">aut</subfield></datafield><datafield tag="810" ind1="2" ind2=" "><subfield code="a">Institut für Mathematik</subfield><subfield code="t">Preprint</subfield><subfield code="v">2015,08</subfield><subfield code="w">(DE-604)BV000015847</subfield><subfield code="9">2015,08</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/3213</subfield><subfield code="x">Verlag</subfield><subfield code="z">kostenfrei</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-028156478</subfield></datafield></record></collection>
id DE-604.BV042725361
illustrated Not Illustrated
indexdate 2024-12-24T04:31:59Z
institution BVB
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-028156478
oclc_num 915405650
open_access_boolean 1
owner DE-384
owner_facet DE-384
physical 1 Online-Ressource
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher Inst. für Mathematik
record_format marc
series2 Preprint / Institut für Mathematik
spelling Bianchi, Luigi Amedeo Verfasser aut
Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory Luigi Amedeo Bianchi ; Dirk Blömker
Augsburg Inst. für Mathematik 2015
1 Online-Ressource
txt rdacontent
c rdamedia
cr rdacarrier
Preprint / Institut für Mathematik 2015,08
Zufälliges Feld (DE-588)4191094-1 gnd rswk-swf
Faltung Mathematik (DE-588)4141470-6 gnd rswk-swf
Modulationsgleichung (DE-588)4530674-6 gnd rswk-swf
Amplitudengleichung (DE-588)4681810-8 gnd rswk-swf
Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd rswk-swf
Gauß-Prozess (DE-588)4156111-9 gnd rswk-swf
Modulationsgleichung (DE-588)4530674-6 s
Stochastische partielle Differentialgleichung (DE-588)4135969-0 s
Amplitudengleichung (DE-588)4681810-8 s
Faltung Mathematik (DE-588)4141470-6 s
Gauß-Prozess (DE-588)4156111-9 s
Zufälliges Feld (DE-588)4191094-1 s
DE-604
Blömker, Dirk 1970- Verfasser (DE-588)173390463 aut
Institut für Mathematik Preprint 2015,08 (DE-604)BV000015847 2015,08
http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/3213 Verlag kostenfrei Volltext
spellingShingle Bianchi, Luigi Amedeo
Blömker, Dirk 1970-
Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory
Zufälliges Feld (DE-588)4191094-1 gnd
Faltung Mathematik (DE-588)4141470-6 gnd
Modulationsgleichung (DE-588)4530674-6 gnd
Amplitudengleichung (DE-588)4681810-8 gnd
Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd
Gauß-Prozess (DE-588)4156111-9 gnd
subject_GND (DE-588)4191094-1
(DE-588)4141470-6
(DE-588)4530674-6
(DE-588)4681810-8
(DE-588)4135969-0
(DE-588)4156111-9
title Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory
title_auth Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory
title_exact_search Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory
title_full Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory Luigi Amedeo Bianchi ; Dirk Blömker
title_fullStr Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory Luigi Amedeo Bianchi ; Dirk Blömker
title_full_unstemmed Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory Luigi Amedeo Bianchi ; Dirk Blömker
title_short Modulation Equation for SPDEs in Unbounded Domains With Space-Time White Noise - Linear Theory
title_sort modulation equation for spdes in unbounded domains with space time white noise linear theory
topic Zufälliges Feld (DE-588)4191094-1 gnd
Faltung Mathematik (DE-588)4141470-6 gnd
Modulationsgleichung (DE-588)4530674-6 gnd
Amplitudengleichung (DE-588)4681810-8 gnd
Stochastische partielle Differentialgleichung (DE-588)4135969-0 gnd
Gauß-Prozess (DE-588)4156111-9 gnd
topic_facet Zufälliges Feld
Faltung Mathematik
Modulationsgleichung
Amplitudengleichung
Stochastische partielle Differentialgleichung
Gauß-Prozess
url http://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/3213
volume_link (DE-604)BV000015847
work_keys_str_mv AT bianchiluigiamedeo modulationequationforspdesinunboundeddomainswithspacetimewhitenoiselineartheory
AT blomkerdirk modulationequationforspdesinunboundeddomainswithspacetimewhitenoiselineartheory