Arithmetic Compactifications of PEL-Type Shimura Varieties

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Lan, Kai-Wen (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, N.J. Princeton University Press [2013]
Schriftenreihe:London Mathematical Society Monographs 36
Schlagworte:
Online-Zugang:DE-1043
DE-1046
DE-858
DE-Aug4
DE-859
DE-860
DE-739
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042523087
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150423s2013 xx o|||| 00||| eng d
020 |a 9781400846016  |9 978-1-4008-4601-6 
024 7 |a 10.1515/9781400846016  |2 doi 
035 |a (OCoLC)832314069 
035 |a (DE-599)BVBBV042523087 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-859  |a DE-860  |a DE-Aug4  |a DE-739  |a DE-1046  |a DE-1043  |a DE-858 
082 0 |a 516.3/5  |2 23 
100 1 |a Lan, Kai-Wen  |e Verfasser  |4 aut 
245 1 0 |a Arithmetic Compactifications of PEL-Type Shimura Varieties  |c Kai-Wen Lan 
264 1 |a Princeton, N.J.  |b Princeton University Press  |c [2013] 
300 |a 1 Online-Ressource (584p.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a London Mathematical Society Monographs  |v 36 
500 |a By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications: A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai) 
546 |a In English 
650 4 |a Mathematik 
650 4 |a Shimura varieties 
650 4 |a Arithmetical algebraic geometry 
650 4 |a MATHEMATICS / Geometry / Algebraic 
650 4 |a MATHEMATICS / Geometry / General 
856 4 0 |u https://doi.org/10.1515/9781400846016  |x Verlag  |3 Volltext 
912 |a ZDB-23-DGG 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027957426 
966 e |u https://doi.org/10.1515/9781400846016?locatt=mode:legacy  |l DE-1043  |p ZDB-23-DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9781400846016?locatt=mode:legacy  |l DE-1046  |p ZDB-23-DGG  |q FAW_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9781400846016?locatt=mode:legacy  |l DE-858  |p ZDB-23-DGG  |q FCO_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9781400846016?locatt=mode:legacy  |l DE-Aug4  |p ZDB-23-DGG  |q FHA_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9781400846016?locatt=mode:legacy  |l DE-859  |p ZDB-23-DGG  |q FKE_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9781400846016?locatt=mode:legacy  |l DE-860  |p ZDB-23-DGG  |q FLA_PDA_DGG  |x Verlag  |3 Volltext 
966 e |u https://doi.org/10.1515/9781400846016?locatt=mode:legacy  |l DE-739  |p ZDB-23-DGG  |q UPA_PDA_DGG  |x Verlag  |3 Volltext 

Datensatz im Suchindex

_version_ 1819294458745716736
any_adam_object
author Lan, Kai-Wen
author_facet Lan, Kai-Wen
author_role aut
author_sort Lan, Kai-Wen
author_variant k w l kwl
building Verbundindex
bvnumber BV042523087
collection ZDB-23-DGG
ctrlnum (OCoLC)832314069
(DE-599)BVBBV042523087
dewey-full 516.3/5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.3/5
dewey-search 516.3/5
dewey-sort 3516.3 15
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1515/9781400846016
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03845nam a2200481zcb4500</leader><controlfield tag="001">BV042523087</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2013 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400846016</subfield><subfield code="9">978-1-4008-4601-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400846016</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)832314069</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042523087</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.3/5</subfield><subfield code="2">23</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lan, Kai-Wen</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Arithmetic Compactifications of PEL-Type Shimura Varieties</subfield><subfield code="c">Kai-Wen Lan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2013]</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (584p.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">London Mathematical Society Monographs</subfield><subfield code="v">36</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications: A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai)</subfield></datafield><datafield tag="546" ind1=" " ind2=" "><subfield code="a">In English</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shimura varieties</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Arithmetical algebraic geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS / Geometry / Algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MATHEMATICS / Geometry / General</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400846016</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957426</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400846016?locatt=mode:legacy</subfield><subfield code="l">DE-1043</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400846016?locatt=mode:legacy</subfield><subfield code="l">DE-1046</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FAW_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400846016?locatt=mode:legacy</subfield><subfield code="l">DE-858</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FCO_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400846016?locatt=mode:legacy</subfield><subfield code="l">DE-Aug4</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FHA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400846016?locatt=mode:legacy</subfield><subfield code="l">DE-859</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FKE_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400846016?locatt=mode:legacy</subfield><subfield code="l">DE-860</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">FLA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://doi.org/10.1515/9781400846016?locatt=mode:legacy</subfield><subfield code="l">DE-739</subfield><subfield code="p">ZDB-23-DGG</subfield><subfield code="q">UPA_PDA_DGG</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield></record></collection>
id DE-604.BV042523087
illustrated Not Illustrated
indexdate 2024-12-24T04:26:35Z
institution BVB
isbn 9781400846016
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027957426
oclc_num 832314069
open_access_boolean
owner DE-859
DE-860
DE-Aug4
DE-739
DE-1046
DE-1043
DE-858
owner_facet DE-859
DE-860
DE-Aug4
DE-739
DE-1046
DE-1043
DE-858
physical 1 Online-Ressource (584p.)
psigel ZDB-23-DGG
ZDB-23-DGG FAW_PDA_DGG
ZDB-23-DGG FCO_PDA_DGG
ZDB-23-DGG FHA_PDA_DGG
ZDB-23-DGG FKE_PDA_DGG
ZDB-23-DGG FLA_PDA_DGG
ZDB-23-DGG UPA_PDA_DGG
publishDate 2013
publishDateSearch 2013
publishDateSort 2013
publisher Princeton University Press
record_format marc
series2 London Mathematical Society Monographs
spelling Lan, Kai-Wen Verfasser aut
Arithmetic Compactifications of PEL-Type Shimura Varieties Kai-Wen Lan
Princeton, N.J. Princeton University Press [2013]
1 Online-Ressource (584p.)
txt rdacontent
c rdamedia
cr rdacarrier
London Mathematical Society Monographs 36
By studying the degeneration of abelian varieties with PEL structures, this book explains the compactifications of smooth integral models of all PEL-type Shimura varieties, providing the logical foundation for several exciting recent developments. The book is designed to be accessible to graduate students who have an understanding of schemes and abelian varieties. PEL-type Shimura varieties, which are natural generalizations of modular curves, are useful for studying the arithmetic properties of automorphic forms and automorphic representations, and they have played important roles in the development of the Langlands program. As with modular curves, it is desirable to have integral models of compactifications of PEL-type Shimura varieties that can be described in sufficient detail near the boundary. This book explains in detail the following topics about PEL-type Shimura varieties and their compactifications: A construction of smooth integral models of PEL-type Shimura varieties by defining and representing moduli problems of abelian schemes with PEL structures An analysis of the degeneration of abelian varieties with PEL structures into semiabelian schemes, over noetherian normal complete adic base rings A construction of toroidal and minimal compactifications of smooth integral models of PEL-type Shimura varieties, with detailed descriptions of their structure near the boundary Through these topics, the book generalizes the theory of degenerations of polarized abelian varieties and the application of that theory to the construction of toroidal and minimal compactifications of Siegel moduli schemes over the integers (as developed by Mumford, Faltings, and Chai)
In English
Mathematik
Shimura varieties
Arithmetical algebraic geometry
MATHEMATICS / Geometry / Algebraic
MATHEMATICS / Geometry / General
https://doi.org/10.1515/9781400846016 Verlag Volltext
spellingShingle Lan, Kai-Wen
Arithmetic Compactifications of PEL-Type Shimura Varieties
Mathematik
Shimura varieties
Arithmetical algebraic geometry
MATHEMATICS / Geometry / Algebraic
MATHEMATICS / Geometry / General
title Arithmetic Compactifications of PEL-Type Shimura Varieties
title_auth Arithmetic Compactifications of PEL-Type Shimura Varieties
title_exact_search Arithmetic Compactifications of PEL-Type Shimura Varieties
title_full Arithmetic Compactifications of PEL-Type Shimura Varieties Kai-Wen Lan
title_fullStr Arithmetic Compactifications of PEL-Type Shimura Varieties Kai-Wen Lan
title_full_unstemmed Arithmetic Compactifications of PEL-Type Shimura Varieties Kai-Wen Lan
title_short Arithmetic Compactifications of PEL-Type Shimura Varieties
title_sort arithmetic compactifications of pel type shimura varieties
topic Mathematik
Shimura varieties
Arithmetical algebraic geometry
MATHEMATICS / Geometry / Algebraic
MATHEMATICS / Geometry / General
topic_facet Mathematik
Shimura varieties
Arithmetical algebraic geometry
MATHEMATICS / Geometry / Algebraic
MATHEMATICS / Geometry / General
url https://doi.org/10.1515/9781400846016
work_keys_str_mv AT lankaiwen arithmeticcompactificationsofpeltypeshimuravarieties