When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Nahin, Paul J. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, N.J. Princeton University Press 2007
Schlagworte:
Online-Zugang:Volltext
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042522961
003 DE-604
005 20210705
007 cr|uuu---uuuuu
008 150423s2007 xx o|||| 00||| eng d
020 |a 9781400841363  |9 978-1-4008-4136-3 
024 7 |a 10.1515/9781400841363  |2 doi 
035 |a (OCoLC)839023783 
035 |a (DE-599)BVBBV042522961 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-859  |a DE-860  |a DE-Aug4  |a DE-739  |a DE-1046  |a DE-1043  |a DE-858 
100 1 |a Nahin, Paul J.  |e Verfasser  |4 aut 
245 1 0 |a When Least Is Best  |b How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible 
264 1 |a Princeton, N.J.  |b Princeton University Press  |c 2007 
300 |a 1 Online-Ressource (392 S.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Biographical note: NahinPaul J.: Paul J. Nahin is Professor Emeritus of Electrical Engineering at the University of New Hampshire. He is the author of many books, including the bestselling "An Imaginary Tale: The Story of the Square Root of Minus One", "Duelling Idiots and Other Probability Puzzlers", and "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills" (all Princeton) 
500 |a Main description: What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible--and how mathematicians over the centuries have struggled to calculate these problems of minima and maxima. From medieval writings to the development of modern calculus to the current field of optimization, Nahin tells the story of Dido's problem, Fermat and Descartes, Torricelli, Bishop Berkeley, Goldschmidt, and more. Along the way, he explores how to build the shortest bridge possible between two towns, how to shop for garbage bags, how to vary speed during a race, and how to make the perfect basketball shot. Written in a conversational tone and requiring only an early undergraduate level of mathematical knowledge, When Least Is Best is full of fascinating examples and ready-to-try-at-home experiments. This is the first book on optimization written for a wide audience, and math enthusiasts of all backgrounds will delight in its lively topics 
648 7 |a Geschichte  |2 gnd  |9 rswk-swf 
650 0 7 |a Extremwert  |0 (DE-588)4137272-4  |2 gnd  |9 rswk-swf 
689 0 0 |a Extremwert  |0 (DE-588)4137272-4  |D s 
689 0 1 |a Geschichte  |A z 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u http://www.degruyter.com/doi/book/10.1515/9781400841363  |x Verlag  |3 Volltext 
856 4 0 |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400841363&searchTitles=true  |x Verlag  |3 Volltext 
912 |a ZDB-23-DGG 
912 |a ZDB-23-DMA 
940 1 |q FKE_PDA_DGG 
940 1 |q FLA_PDA_DGG 
940 1 |q FHA_PDA_DGG 
940 1 |q UPA_PDA_DGG 
940 1 |q FAW_PDA_DGG 
940 1 |q FCO_PDA_DGG 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027957300 

Datensatz im Suchindex

_version_ 1819294458699579392
any_adam_object
author Nahin, Paul J.
author_facet Nahin, Paul J.
author_role aut
author_sort Nahin, Paul J.
author_variant p j n pj pjn
building Verbundindex
bvnumber BV042522961
collection ZDB-23-DGG
ZDB-23-DMA
ctrlnum (OCoLC)839023783
(DE-599)BVBBV042522961
era Geschichte gnd
era_facet Geschichte
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03478nam a2200481zc 4500</leader><controlfield tag="001">BV042522961</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20210705 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2007 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400841363</subfield><subfield code="9">978-1-4008-4136-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400841363</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)839023783</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042522961</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Nahin, Paul J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">When Least Is Best</subfield><subfield code="b">How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (392 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Biographical note: NahinPaul J.: Paul J. Nahin is Professor Emeritus of Electrical Engineering at the University of New Hampshire. He is the author of many books, including the bestselling "An Imaginary Tale: The Story of the Square Root of Minus One", "Duelling Idiots and Other Probability Puzzlers", and "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills" (all Princeton)</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible--and how mathematicians over the centuries have struggled to calculate these problems of minima and maxima. From medieval writings to the development of modern calculus to the current field of optimization, Nahin tells the story of Dido's problem, Fermat and Descartes, Torricelli, Bishop Berkeley, Goldschmidt, and more. Along the way, he explores how to build the shortest bridge possible between two towns, how to shop for garbage bags, how to vary speed during a race, and how to make the perfect basketball shot. Written in a conversational tone and requiring only an early undergraduate level of mathematical knowledge, When Least Is Best is full of fascinating examples and ready-to-try-at-home experiments. This is the first book on optimization written for a wide audience, and math enthusiasts of all backgrounds will delight in its lively topics</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/doi/book/10.1515/9781400841363</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&amp;q_0=9781400841363&amp;searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DMA</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957300</subfield></datafield></record></collection>
id DE-604.BV042522961
illustrated Not Illustrated
indexdate 2024-12-24T04:26:35Z
institution BVB
isbn 9781400841363
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027957300
oclc_num 839023783
open_access_boolean
owner DE-859
DE-860
DE-Aug4
DE-739
DE-1046
DE-1043
DE-858
owner_facet DE-859
DE-860
DE-Aug4
DE-739
DE-1046
DE-1043
DE-858
physical 1 Online-Ressource (392 S.)
psigel ZDB-23-DGG
ZDB-23-DMA
FKE_PDA_DGG
FLA_PDA_DGG
FHA_PDA_DGG
UPA_PDA_DGG
FAW_PDA_DGG
FCO_PDA_DGG
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Princeton University Press
record_format marc
spelling Nahin, Paul J. Verfasser aut
When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
Princeton, N.J. Princeton University Press 2007
1 Online-Ressource (392 S.)
txt rdacontent
c rdamedia
cr rdacarrier
Biographical note: NahinPaul J.: Paul J. Nahin is Professor Emeritus of Electrical Engineering at the University of New Hampshire. He is the author of many books, including the bestselling "An Imaginary Tale: The Story of the Square Root of Minus One", "Duelling Idiots and Other Probability Puzzlers", and "Dr. Euler's Fabulous Formula: Cures Many Mathematical Ills" (all Princeton)
Main description: What is the best way to photograph a speeding bullet? Why does light move through glass in the least amount of time possible? How can lost hikers find their way out of a forest? What will rainbows look like in the future? Why do soap bubbles have a shape that gives them the least area? By combining the mathematical history of extrema with contemporary examples, Paul J. Nahin answers these intriguing questions and more in this engaging and witty volume. He shows how life often works at the extremes--with values becoming as small (or as large) as possible--and how mathematicians over the centuries have struggled to calculate these problems of minima and maxima. From medieval writings to the development of modern calculus to the current field of optimization, Nahin tells the story of Dido's problem, Fermat and Descartes, Torricelli, Bishop Berkeley, Goldschmidt, and more. Along the way, he explores how to build the shortest bridge possible between two towns, how to shop for garbage bags, how to vary speed during a race, and how to make the perfect basketball shot. Written in a conversational tone and requiring only an early undergraduate level of mathematical knowledge, When Least Is Best is full of fascinating examples and ready-to-try-at-home experiments. This is the first book on optimization written for a wide audience, and math enthusiasts of all backgrounds will delight in its lively topics
Geschichte gnd rswk-swf
Extremwert (DE-588)4137272-4 gnd rswk-swf
Extremwert (DE-588)4137272-4 s
Geschichte z
1\p DE-604
http://www.degruyter.com/doi/book/10.1515/9781400841363 Verlag Volltext
http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400841363&searchTitles=true Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Nahin, Paul J.
When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
Extremwert (DE-588)4137272-4 gnd
subject_GND (DE-588)4137272-4
title When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
title_auth When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
title_exact_search When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
title_full When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
title_fullStr When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
title_full_unstemmed When Least Is Best How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
title_short When Least Is Best
title_sort when least is best how mathematicians discovered many clever ways to make things as small or as large as possible
title_sub How Mathematicians Discovered Many Clever Ways to Make Things as Small (or as Large) as Possible
topic Extremwert (DE-588)4137272-4 gnd
topic_facet Extremwert
url http://www.degruyter.com/doi/book/10.1515/9781400841363
http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400841363&searchTitles=true
work_keys_str_mv AT nahinpaulj whenleastisbesthowmathematiciansdiscoveredmanycleverwaystomakethingsassmalloraslargeaspossible