Spherical CR geometry and Dehn surgery

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Schwartz, Richard Evan 1966- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Princeton, N.J. Princeton University Press [2007]
Schriftenreihe:Annals of Mathematics Studies number 165
Schlagworte:
Online-Zugang:URL des Erstveröffentlichers
Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 cb4500
001 BV042522799
003 DE-604
005 20200331
007 cr|uuu---uuuuu
008 150423s2007 xx o|||| 00||| eng d
020 |a 9781400837199  |9 978-1-4008-3719-9 
024 7 |a 10.1515/9781400837199  |2 doi 
035 |a (OCoLC)1165545773 
035 |a (DE-599)BVBBV042522799 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-859  |a DE-860  |a DE-Aug4  |a DE-739  |a DE-1046  |a DE-83  |a DE-1043  |a DE-858 
084 |a SK 350  |0 (DE-625)143233:  |2 rvk 
100 1 |a Schwartz, Richard Evan  |d 1966-  |0 (DE-588)102219111X  |4 aut 
245 1 0 |a Spherical CR geometry and Dehn surgery 
264 1 |a Princeton, N.J.  |b Princeton University Press  |c [2007] 
264 4 |c © 2007 
300 |a 1 Online-Ressource (200 S.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Annals of Mathematics Studies  |v number 165 
500 |a Main description: This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry 
650 0 7 |a Komplexe Geometrie  |0 (DE-588)4164898-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Cauchy-Riemannsche Untermannigfaltigkeit  |0 (DE-588)4208176-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Dimension 3  |0 (DE-588)4321722-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Cauchy-Riemannsche Untermannigfaltigkeit  |0 (DE-588)4208176-2  |D s 
689 0 1 |a Dimension 3  |0 (DE-588)4321722-9  |D s 
689 0 2 |a Komplexe Geometrie  |0 (DE-588)4164898-5  |D s 
689 0 |8 1\p  |5 DE-604 
776 0 8 |i Erscheint auch als  |n Druck-Ausgabe  |z 978-0-691-12809-2 
830 0 |a Annals of Mathematics Studies  |v number 165  |w (DE-604)BV040389493  |9 165 
856 4 0 |u https://doi.org/10.1515/9781400837199?locatt=mode:legacy  |x Verlag  |z URL des Erstveröffentlichers  |3 Volltext 
856 4 0 |u http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837199&searchTitles=true  |x Verlag  |3 Volltext 
912 |a ZDB-23-DGG 
912 |a ZDB-23-PST 
940 1 |q FKE_PDA_DGG 
940 1 |q FLA_PDA_DGG 
940 1 |q FHA_PDA_DGG 
940 1 |q UPA_PDA_DGG 
940 1 |q FAW_PDA_DGG 
940 1 |q FCO_PDA_DGG 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027957138 

Datensatz im Suchindex

_version_ 1819294458661830656
any_adam_object
author Schwartz, Richard Evan 1966-
author_GND (DE-588)102219111X
author_facet Schwartz, Richard Evan 1966-
author_role aut
author_sort Schwartz, Richard Evan 1966-
author_variant r e s re res
building Verbundindex
bvnumber BV042522799
classification_rvk SK 350
collection ZDB-23-DGG
ZDB-23-PST
ctrlnum (OCoLC)1165545773
(DE-599)BVBBV042522799
discipline Mathematik
doi_str_mv 10.1515/9781400837199
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03212nam a2200553 cb4500</leader><controlfield tag="001">BV042522799</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200331 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150423s2007 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9781400837199</subfield><subfield code="9">978-1-4008-3719-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1515/9781400837199</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165545773</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042522799</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-859</subfield><subfield code="a">DE-860</subfield><subfield code="a">DE-Aug4</subfield><subfield code="a">DE-739</subfield><subfield code="a">DE-1046</subfield><subfield code="a">DE-83</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-858</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">SK 350</subfield><subfield code="0">(DE-625)143233:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Schwartz, Richard Evan</subfield><subfield code="d">1966-</subfield><subfield code="0">(DE-588)102219111X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Spherical CR geometry and Dehn surgery</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Princeton, N.J.</subfield><subfield code="b">Princeton University Press</subfield><subfield code="c">[2007]</subfield></datafield><datafield tag="264" ind1=" " ind2="4"><subfield code="c">© 2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (200 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 165</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main description: This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe Geometrie</subfield><subfield code="0">(DE-588)4164898-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cauchy-Riemannsche Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4208176-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Cauchy-Riemannsche Untermannigfaltigkeit</subfield><subfield code="0">(DE-588)4208176-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dimension 3</subfield><subfield code="0">(DE-588)4321722-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Komplexe Geometrie</subfield><subfield code="0">(DE-588)4164898-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Druck-Ausgabe</subfield><subfield code="z">978-0-691-12809-2</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Annals of Mathematics Studies</subfield><subfield code="v">number 165</subfield><subfield code="w">(DE-604)BV040389493</subfield><subfield code="9">165</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1515/9781400837199?locatt=mode:legacy</subfield><subfield code="x">Verlag</subfield><subfield code="z">URL des Erstveröffentlichers</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">http://www.degruyter.com/search?f_0=isbnissn&amp;q_0=9781400837199&amp;searchTitles=true</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-DGG</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-23-PST</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FKE_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FLA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FHA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">UPA_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FAW_PDA_DGG</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">FCO_PDA_DGG</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027957138</subfield></datafield></record></collection>
id DE-604.BV042522799
illustrated Not Illustrated
indexdate 2024-12-24T04:26:34Z
institution BVB
isbn 9781400837199
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027957138
oclc_num 1165545773
open_access_boolean
owner DE-859
DE-860
DE-Aug4
DE-739
DE-1046
DE-83
DE-1043
DE-858
owner_facet DE-859
DE-860
DE-Aug4
DE-739
DE-1046
DE-83
DE-1043
DE-858
physical 1 Online-Ressource (200 S.)
psigel ZDB-23-DGG
ZDB-23-PST
FKE_PDA_DGG
FLA_PDA_DGG
FHA_PDA_DGG
UPA_PDA_DGG
FAW_PDA_DGG
FCO_PDA_DGG
publishDate 2007
publishDateSearch 2007
publishDateSort 2007
publisher Princeton University Press
record_format marc
series Annals of Mathematics Studies
series2 Annals of Mathematics Studies
spelling Schwartz, Richard Evan 1966- (DE-588)102219111X aut
Spherical CR geometry and Dehn surgery
Princeton, N.J. Princeton University Press [2007]
© 2007
1 Online-Ressource (200 S.)
txt rdacontent
c rdamedia
cr rdacarrier
Annals of Mathematics Studies number 165
Main description: This book proves an analogue of William Thurston's celebrated hyperbolic Dehn surgery theorem in the context of complex hyperbolic discrete groups, and then derives two main geometric consequences from it. The first is the construction of large numbers of closed real hyperbolic 3-manifolds which bound complex hyperbolic orbifolds--the only known examples of closed manifolds that simultaneously have these two kinds of geometric structures. The second is a complete understanding of the structure of complex hyperbolic reflection triangle groups in cases where the angle is small. In an accessible and straightforward manner, Richard Evan Schwartz also presents a large amount of useful information on complex hyperbolic geometry and discrete groups. Schwartz relies on elementary proofs and avoids quotations of preexisting technical material as much as possible. For this reason, this book will benefit graduate students seeking entry into this emerging area of research, as well as researchers in allied fields such as Kleinian groups and CR geometry
Komplexe Geometrie (DE-588)4164898-5 gnd rswk-swf
Cauchy-Riemannsche Untermannigfaltigkeit (DE-588)4208176-2 gnd rswk-swf
Dimension 3 (DE-588)4321722-9 gnd rswk-swf
Cauchy-Riemannsche Untermannigfaltigkeit (DE-588)4208176-2 s
Dimension 3 (DE-588)4321722-9 s
Komplexe Geometrie (DE-588)4164898-5 s
1\p DE-604
Erscheint auch als Druck-Ausgabe 978-0-691-12809-2
Annals of Mathematics Studies number 165 (DE-604)BV040389493 165
https://doi.org/10.1515/9781400837199?locatt=mode:legacy Verlag URL des Erstveröffentlichers Volltext
http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837199&searchTitles=true Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Schwartz, Richard Evan 1966-
Spherical CR geometry and Dehn surgery
Annals of Mathematics Studies
Komplexe Geometrie (DE-588)4164898-5 gnd
Cauchy-Riemannsche Untermannigfaltigkeit (DE-588)4208176-2 gnd
Dimension 3 (DE-588)4321722-9 gnd
subject_GND (DE-588)4164898-5
(DE-588)4208176-2
(DE-588)4321722-9
title Spherical CR geometry and Dehn surgery
title_auth Spherical CR geometry and Dehn surgery
title_exact_search Spherical CR geometry and Dehn surgery
title_full Spherical CR geometry and Dehn surgery
title_fullStr Spherical CR geometry and Dehn surgery
title_full_unstemmed Spherical CR geometry and Dehn surgery
title_short Spherical CR geometry and Dehn surgery
title_sort spherical cr geometry and dehn surgery
topic Komplexe Geometrie (DE-588)4164898-5 gnd
Cauchy-Riemannsche Untermannigfaltigkeit (DE-588)4208176-2 gnd
Dimension 3 (DE-588)4321722-9 gnd
topic_facet Komplexe Geometrie
Cauchy-Riemannsche Untermannigfaltigkeit
Dimension 3
url https://doi.org/10.1515/9781400837199?locatt=mode:legacy
http://www.degruyter.com/search?f_0=isbnissn&q_0=9781400837199&searchTitles=true
volume_link (DE-604)BV040389493
work_keys_str_mv AT schwartzrichardevan sphericalcrgeometryanddehnsurgery