R for marketing research and analytics

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chapman, Chris (VerfasserIn), Feit, Elea McDonnell (VerfasserIn)
Format: Buch
Sprache:English
Veröffentlicht: Cham [u.a.] Springer 2015
Schriftenreihe:Use R!
Schlagworte:
Online-Zugang:Inhaltsverzeichnis
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000 c 4500
001 BV042488459
003 DE-604
005 20190722
007 t|
008 150408s2015 xx bd|| |||| 00||| eng d
020 |a 9783319144351  |9 978-3-319-14435-1 
035 |a (OCoLC)907621983 
035 |a (DE-599)BVBBV042488459 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-1050  |a DE-1043  |a DE-11  |a DE-M347  |a DE-355  |a DE-1049  |a DE-92  |a DE-521 
082 0 |a 330.015195  |2 23 
084 |a ST 250  |0 (DE-625)143626:  |2 rvk 
084 |a ST 601  |0 (DE-625)143682:  |2 rvk 
084 |a QP 611  |0 (DE-625)141908:  |2 rvk 
100 1 |a Chapman, Chris  |e Verfasser  |4 aut 
245 1 0 |a R for marketing research and analytics  |c Chris Chapman ; Elea McDonnell Feit 
264 1 |a Cham [u.a.]  |b Springer  |c 2015 
300 |a XVIII, 454 S.  |b graph. Darst., Kt. 
336 |b txt  |2 rdacontent 
337 |b n  |2 rdamedia 
338 |b nc  |2 rdacarrier 
490 0 |a Use R! 
650 4 |a Statistics 
650 4 |a Mathematical statistics 
650 4 |a Economics / Statistics 
650 4 |a Marketing 
650 4 |a Statistics for Business/Economics/Mathematical Finance/Insurance 
650 4 |a Statistics and Computing/Statistics Programs 
650 4 |a Statistik 
650 4 |a Wirtschaft 
650 0 7 |a R  |g Programm  |0 (DE-588)4705956-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Statistik  |0 (DE-588)4056995-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Marketingforschung  |0 (DE-588)4200055-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Marketingforschung  |0 (DE-588)4200055-5  |D s 
689 0 1 |a Statistik  |0 (DE-588)4056995-0  |D s 
689 0 2 |a R  |g Programm  |0 (DE-588)4705956-4  |D s 
689 0 |5 DE-604 
700 1 |a Feit, Elea McDonnell  |e Verfasser  |0 (DE-588)14174586X  |4 aut 
776 0 8 |i Erscheint auch als  |n Online-Ausgabe  |z 978-3-319-14436-8 
856 4 2 |m Digitalisierung UB Regensburg - ADAM Catalogue Enrichment  |q application/pdf  |u http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027923293&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA  |3 Inhaltsverzeichnis 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027923293 

Datensatz im Suchindex

_version_ 1819673884321906688
adam_text Contents Preface............................................................... vii Part I Basics of R 1 1 Welcome to R....................................................... 3 1.1 What Is R?...................................................... 3 1.2 Why R?.......................................................... 4 1.3 Why Not R?...................................................... 5 1.4 When R?......................................................... 6 1.5 Using This Book................................................. 6 1.5.1 About the Text......................................... 6 1.5.2 About the Data....................................... 7 1.5.3 Online Material.................... ............... . . 8 1.5.4 When Things Go Wrong .................................... 9 1.6 Key Points............................................ 10 2 An Overview of the R Language.................................. 11 2.1 Getting Started............................................. 11 2.1.1 Initial Steps ....................................... 11 2.1.2 Starting R ......................................... 12 2.2 A Quick Tour of R’s Capabilities ............................. 13 2.3 Basics of Working with R Commands ........................... 17 2.4 Basic Objects ........................,...... .............. 18 2.4.1 Vectors.......-....................... -............... 19 2.4.2 Help! A Brief Detour.................................. 21 2.4.3 More on Vectors and Indexing............................ 24 2.4.4 aaRgh! A Digression for New Programmers................. 26 2.4.5 Missing and Interesting Values ......................... 26 2.4.6 Using R for Mathematical Computation.................... 28 2.4.7 Lists................................................. 28 xi Contents xii 2.5 Data Frames..................................................... 30 2.6 Loading and Saving Data...................................... 34 2.6.1 Image Files............................................ 36 2.6.2 CSV Files............................................. 36 2.7 Writing Your Own Functions*..................................... 38 2.7.1 Language Structures*................................... 40 2.7.2 Anonymous Functions* .................................. 41 2.8 Clean Up!.................................................... 42 2. 9 Learning More* ............................................ 43 2.10 Key Points . ................................................ 44 Part П Fundamentals of Data Analysis 3 Describing Data ............................ ..................... 47 3.1 Simulating Data............................................... 47 3.1.1 Store Data: Setting the Structure..................... 48 3.1.2 Store Data: Simulating Data Points ................... 50 3.2 Functions to Summarize a Variable............................ 52 3.2.1 Discrete Variables.................................... 52 3.2.2 Continuous Variables.................................. 54 3.3 Summarizing Data Frames...................................... 56 3.3.1 summary ()............................................ 57 3.3.2 describe () .......................................... 58 3.3.3 Recommended Approach to Inspecting Data .............. 59 3.3.4 apply () ★............................................ 59 3.4 Single Variable Visualization................................ 61 3.4.1 Histograms........................................ 61 3.4.2 Вохріots ............................................. 66 3.4.3 QQ Plot to Check Normality*...... 68 3.4.4 Cumulative Distribution* .......,,.................* - 69 3.4.5 Language Brief: by () and aggregate ()................ 70 3.4.6 Maps.................................................. 72 3.5 Learning More*................................................ 74 3.6 Key Points..............,,. . ............................... 75 4 Relationships Between Continuous Variables ............ ....... 77 4.1 Retailer Data .......................................... 77 4.1.1 Simulating Customer Data ............................. 78 4.1.2 Simulating Online and In֊Store Sales Data............. 79 4.1.3 Simulating Satisfaction Survey Responses .............. 80 4.1.4 Simulating Non-Response Data . ........................ 82 4.2 Exploring Associations Between Variables with Scatterplots.... 83 4.2.1 Creating a Basic Scatterplot with plot () .......... 83 4.2.2 Color-Coding Points on a Scatterplot.... .............. 86 Contents X1JUL 4.2.3 Adding a Legend to a Plot............................... 88 4.2.4 Plotting on a Log Scale................................. 89 4.3 Combining Plots in a Single Graphics Object.................... 90 4.4 Scatterplot Matrices .......................................... 92 4.4.1 pairs () ............................................... 92 4.4.2 scatterplotMatrix ( ) .................................. 93 4.5 Correlation Coefficients....................................... 95 4.5.1 Correlation Tes ts...................................... 97 4.5.2 Correlation Matrices ................................... 98 4.5.3 Transforming Variables before Computing Correlations .... 100 4.5.4 Typical Marketing Data Transformations .................102 4.5.5 Box-Cox Transformations* ...............................102 4.6 Exploring Associations in Survey Responses*....................104 4.6.1 j itter () *............................................105 4.6.2 polychoric ( ) *........................................106 4.7 Learning More*.................................................107 4.8 Key Points.....................................................108 5 Comparing Groups: Tables and Visualizations .......................Ill 5.1. Simulating Consumer Segment Data...............................Ill 5.1.1 S egment D a ta Defi ni ti o n..........................112 5.1.2 Language Brief: for () Loops............................114 5.1.3 Language Brief: if () Blocks............................116 5.1.4 Final Segment Data Generation ..........................118 5.2 Finding Descriptives by Group .................................120 5.2.1 Language Brief: Basic Formula Syntax....................123 5.2.2 Descrip tives for Two-Way Groups........................124 5.2.3 Visualization by Group: Frequencies and Proportions....126 5.2.4 Visualization by Group: Continuous Data.................129 5.3 Learning More*.................................................132 5.4 Key Points..........r.........................................133 6 Comparing Groups: Statistical Tests ...............................135 6.1 Data for Comparing Groups......................................135 6.2 Testing Group Frequencies: chisq. test {) .....................136 6.3 Testing Observed Proportions: binom . test () .................139 6.3.1 About Confidence Intervals..............................140 6.3.2 More About binom. test () and Binomial Distributions .141 6.4 Testing Group Means: t .test () ...............................142 6.5 Testing Multiple Group Means: ANOVA............................144 6.5.1 Model Comparison in ANOVA*..............................146 6.5.2 Visualizing Group Confidence Intervals .................147 6.5.3 Variable Selection in ANOVA: Stepwise Modeling*.........148 6.6 Bayesian ANOVA: Getting Started*...............................149 6.6.1 Why Bayes?..............................................150 xiv Contents 6.6.2 Basics of Bayesian ANOVA*...............................150 6.6.3 Inspecting the Posterior Draws*........................152 6.6.4 Plotting the Bayesian Credible Intervals*..............155 6.7 Learning More*................ ................................156 6.8 Key Points ....................................................157 7 Identifying Drivers of Outcomes: Linear Models.....................159 7.1 Amusement Park Data ..........................................160 7.1.1 Simulating the Amusement Park Data......................160 7.2 Fitting Linear Models with ltn() .............................162 7.2.1 Preliminary Data Inspection.......................... 163 7.2.2 Recap: Bivariate Association ...........................165 7.2.3 Linear Model with a Single Predictor ...................165 7.2.4 lm Objects..............................................166 7.2.5 Checking Model Fit......................................169 7.3 Fitting Linear Models with Multiple Predictors.................173 7.3.1 Comparing Models....................................... 125 7.3.2 Using a Model to Make Predictions.......................176 7.3.3 Standardizing the Predictors............................177 7.4 Using Factors as Predictors ...................................179 7.5 Interaction Terms..............................................182 7.5.1 Language Brief : Advanced Formula Syntax*...............183 7.6 Caution! Overfitting...........................................185 7.7 Recommended Procedure for Linear Model Fitting.................186 7.8 Bayesian Linear Models with MCMCregress () * ...............186 7.9 Learning More*.................................................188 7.10 Key Points .................................................. 190 Part III Advanced Marketing Applications 8 Reducing Data Complexity............................................195 8.1 Consumer Brand Rating Data ...................................195 8.1.1 Rescaling the Data . ...................................193 8.1.2 Aggregate Mean Ratings by Brand.........................198 8.2 Principal Component Analysis and Perceptual Maps..............200 8.2.1 PC A Example............................................20° 8.2.2 Visualizing PCA.........................................203 8.2.3 PCA for Brand Ratings...................................204 8.2.4 Perceptual Map of the Brands............................206 8.2.5 Cautions with Perceptual Maps...........................208 8.3 Exploratory Factor Analysis....................................209 8.3.1 Basic EFA Concepts......................................230 8.3.2 Finding an EFA Solution.................................233 Contents XV 8.3.3 EFA Rotations.............................................213 8.3.4 Using Factor Scores for Brands ...........................216 8.4 Multidimensional Scaling.........................................218 8.4.1 Non - metric MDS..........................................219 8.5 Learning More*...................................................221 8.5.1 Principal Component Analysis..............................221 8.5.2 Factor Analysis...........................................221 8.5.3 Multidimensional Scaling..................................222 8.6 Key Points.......................................................222 8.6.1 Principal Component Analysis..............................222 8.6.2 Exploratory Factor Analysis...............................222 8.6.3 Multidimensional Scaling..................................223 Additional Linear Modeling Topics...................................225 9.1 Handling Highly Correlated Variables ............................226 9.1.1 An Initial Linear Model of Online Spend...................226 9.1.2 Remediating Collinearity..................................229 9.2 Linear Models for Binary Outcomes: Logistic Regression..........231. 9.2.1 Basics of the Logistic Regression Model...................231 9.2.2 Data for Logistic Regression of Season Passes.............232 9.2.3 Sales Table Data..........................................233 9.2.4 Language Brief: Classes and Attributes of Objects* .......234 9.2.5 Finalizing the Data.......................................236 9.2.6 Fitting a Logistic Regression Model ......................237 9.2.7 Reconsidering the Model...................................239 9.2.8 Additional Discussion.....................................242 9.3 Hierarchical Linear Models.......................................242 9.3.1 Some HUM Concepts.........................................243 9.3.2 Ratings-Based Conjoint Analysis for the Amusement Park. . 244 9.3.3 Simulating Ratings-Based Conjoint Data ...................245 9.3.4 An Initial Linear Model...................................246 9.3.5 Hierarchical Linear Model with lme4.......................248 9.3.6 The Complete Hierarchical Linear Model....................249 9.3.7 Summary of HUM with lme4 .................................251 9.4 Bayesian Hierarchical Linear Models*.............................252 9.4.1 Initial Linear Model with MCMCregress () * ...............253 9.4.2 Hierarchical Linear Model with MC MChregress () *.........253 9.4.3 Inspecting Distribution of Preference*....................256 9.5 A Quick Comparison of Frequentist Bayesian HUMs* ..............259 9.6 Learning More*...................................................263 9.6.1 Collinearity..............................................263 9.6.2 Logistic Regression.......................................263 9.6.3 Hierarchical Models.......................................263 9.6.4 Bayesian Hierarchical Models .............................263 9.7 Key Points...................................................... 264 9.7.1 Collinearity..............................................264 xvi Contents 9.7.2 Cogistic Regression.......................................264 9.7.3 Hierarchical Linear Models................................265 9.7.4 Bayesian Methods for Hierarchical Linear Models ..........266 10 Confirmatory Factor Analysis and Structural Equation Modeling 267 10.1 The Motivation for Structural Models............................268 10.1.1 Structural Models in. This Chapter.......................269 10.2 Scale Assessment: CFA ..........................................270 10.2.1 Simulating PIES CFA Data..................................272 10.2.2 Estimating the PIES CFA Model.............................277 10.2.3 Assessing the PIES CFA Model..............................278 10.3 General Models: Structural Equation Models .....................283 10.3.1 The Repeat Purchase Model in R............................284 10.3.2 Assessing the Repeat Purchase Model.......................286 10.4 The Partial Least Squares (PLS) Alternative.....................288 10.4.1 PLS-SEM for Repeat Purchase...............................289 10.4.2 Visualizing the Fitted PLS Model*.........................292 10.4.3 Assessing the PLS-SEM Model...............................293 10.4.4 PLS֊SEM. with the Larger Sample...........................295 10.5 Learning More*..................................................297 10.6 Key Points......................................................297 11 11 Segmentation: Clustering and Classification........... ..............299 11.1 Segmentation Philosophy..........................................299 11.1.1 The Difficulty of Segmentation............................299 11.1.2 Segmentation as Clustering and Classification...........300 11.2 Segmentation Data *..............................................302 11.3 Clustering.......................................................302 11.3.1 The Steps of Clustering...................................303 11-3-2 Hierarchical Clustering: Jnclust () Basics......-........305 11.3.3 Hierarchical Clustering Continued: Groups from he lust () 309 11.3.4 Mean-Based Clustering: km earns (}.......................311 11.3.5 Model-Based Clustering: Mclust () ........................314 11.3.6 Comparing Models with BIC() ..............................315 11-3-7 Latent Class Analysis: poLCA ()...........................317 11.3.8 Comparing Cluster Solutions ..............................320 11.3.9 Recap of Clustering.......................................322 11.4 Classification..................................................322 11.4.1 Naive Bayes Classification: naiveBayes () ................323 11.4.2 Random Forest Classification: randomForest () ............327 11.4.3 Random Forest Variable Importance.........................330 11.5 Prediction: Identifying Potential Customers*.....................333 11.6 Learning More*...................................................336 11.7 Key Points.......................................................337 Contents xvu 12 Association Rules for Market Basket Analysis........................339 12.1 The Basics of Association Rules................................340 12.1.1 Metrics.................................................340 12.2 Retail Transaction Data: Market Baskets........................341 12.2.1 Example Data: Groceries ................................342 12.2.2 Supermarket Data . ·...................................344 12.3 Finding and Visualizing Association Rules......................346 12.3.1 Finding and Plotting Subsets of Rules...................348 12.3.2 Using Profit Margin Data with Transactions: An Initial Start 349 12.3.3 Fanguage Brief: A Function for Margin Using an Object’s class*.........................................351 12.4 Rules in Non-Transactional Data: Exploring Segments Again.....356 12.4.1 Fanguage Brief: Slicing Continuous Data with cut ()....356 12.4.2 Exploring Segment Associations .........................357 12.5 Teaming More*..................................................360 12.6 Key Points.....................................................360 13 Choice Modeling......................................................363 13.1 Choice-Based Conjoint Analysis Surveys ........................364 13.2 Simulating Choice Data*........................................365 13.3 Fitting a Choice Model.........................................370 13.3.1 Inspecting Choice Data..................................371 13.3.2 Fitting Choice Models with mlcgit () ...................372 13.3.3 Reporting Choice Model Findings.........................375 13.3.4 Share Predictions for Identical Alternatives ...........380 13.3.5 Planning the Sample Size for a Conjoint Study .........381 13.4 Adding Consumer Heterogeneity to Choice Models.................383 13.4.1 Estimating Mixed Fogit Models with mlogit () ..........383 13.4.2 Share Prediction for Heterogeneous Choice Models .......386 13.5 Hierarchical Bayes Choice Models...............................388 13.5.1 Estimating Hierarchical Bayes Choice Models with ChoiceModelR........................................... 388 13.5.2 Share Prediction for Hierarchical Bayes Choice Models .... 395 13.6 Design of Choice-Based Conjoint Surveys*.......................397 13.7 Learning More*.................................................398 13.8 Key Points.....................................................399 Conclusion...............................................................401 A Appendix: R Versions and Related Software............................403 A.l R Base ........................................................403 A.2 RStudio........................................................404 A.3 Emacs Speaks Statistics........................................405 A.4 Eclipse 4- S tat FT............................................406 A. 5 Revolution R................................................ 407 Contents xviii A. 6 Other Options ................................................408 A.6.1 Text Editors...........................................408 A.6.2 R Commander............................................408 A.6.3 Rattle..................................................409 A,6.4 Deducer.................................................409 A. 6.5 TIB CO Enterprise Runtime for R.........................409 B Appendix: Scaling Up ................................................411 B. l Handling Data................................................411 B. 1.1 Data Wrangling . ......................................411 B.1.2 Microsoft Excel: gdata..................................412 B.1.3 SAS, SPSS, and Other Statistics Packages: foreign......412 B.l.4 SQL: RSQLite, sqldf and RODBC........................413 B.2 Handling Large Data Sets......................................415 B.3 Speeding Up Computation.......................................416 B.3.1 Efficient Coding and Data Storage.......................416 B. 3.2 Enhancing the R Engine..................................417 B.4 Time Series Analysis, Repeated Measures, and Longitudinal Analysis......................................418 B. 5 Automated and Interactive Reporting...........................419 C Appendix: Packages Used..............................................423 C. l Core and Frequentist Statistics...............................424 C.2 Graphics......................................................424 C.3 Bayesian Methods..............................................425 C.4 Advanced Statistics...........................................426 C.5 Machine Learning..............................................426 C.6 Data Handling.................................................427 C. 7 Other Packages ................................................428 D Appendix: Online Materials and Data Files ......................... 431 D. 1 Data File Structure ......................................... . 431 D.2 Data File URL Cross-Reference............................... 432 D.2.1 Update on Data Locations................................432 References.............................................................. 435 Index....................................................................447
any_adam_object 1
author Chapman, Chris
Feit, Elea McDonnell
author_GND (DE-588)14174586X
author_facet Chapman, Chris
Feit, Elea McDonnell
author_role aut
aut
author_sort Chapman, Chris
author_variant c c cc
e m f em emf
building Verbundindex
bvnumber BV042488459
classification_rvk ST 250
ST 601
QP 611
ctrlnum (OCoLC)907621983
(DE-599)BVBBV042488459
dewey-full 330.015195
dewey-hundreds 300 - Social sciences
dewey-ones 330 - Economics
dewey-raw 330.015195
dewey-search 330.015195
dewey-sort 3330.015195
dewey-tens 330 - Economics
discipline Informatik
Wirtschaftswissenschaften
format Book
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02110nam a2200529 c 4500</leader><controlfield tag="001">BV042488459</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190722 </controlfield><controlfield tag="007">t|</controlfield><controlfield tag="008">150408s2015 xx bd|| |||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783319144351</subfield><subfield code="9">978-3-319-14435-1</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)907621983</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042488459</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-1050</subfield><subfield code="a">DE-1043</subfield><subfield code="a">DE-11</subfield><subfield code="a">DE-M347</subfield><subfield code="a">DE-355</subfield><subfield code="a">DE-1049</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-521</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.015195</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 250</subfield><subfield code="0">(DE-625)143626:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">ST 601</subfield><subfield code="0">(DE-625)143682:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">QP 611</subfield><subfield code="0">(DE-625)141908:</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chapman, Chris</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">R for marketing research and analytics</subfield><subfield code="c">Chris Chapman ; Elea McDonnell Feit</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Cham [u.a.]</subfield><subfield code="b">Springer</subfield><subfield code="c">2015</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">XVIII, 454 S.</subfield><subfield code="b">graph. Darst., Kt.</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Use R!</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics / Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Marketing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Business/Economics/Mathematical Finance/Insurance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics and Computing/Statistics Programs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Marketingforschung</subfield><subfield code="0">(DE-588)4200055-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Marketingforschung</subfield><subfield code="0">(DE-588)4200055-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">R</subfield><subfield code="g">Programm</subfield><subfield code="0">(DE-588)4705956-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feit, Elea McDonnell</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)14174586X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="776" ind1="0" ind2="8"><subfield code="i">Erscheint auch als</subfield><subfield code="n">Online-Ausgabe</subfield><subfield code="z">978-3-319-14436-8</subfield></datafield><datafield tag="856" ind1="4" ind2="2"><subfield code="m">Digitalisierung UB Regensburg - ADAM Catalogue Enrichment</subfield><subfield code="q">application/pdf</subfield><subfield code="u">http://bvbr.bib-bvb.de:8991/F?func=service&amp;doc_library=BVB01&amp;local_base=BVB01&amp;doc_number=027923293&amp;sequence=000002&amp;line_number=0001&amp;func_code=DB_RECORDS&amp;service_type=MEDIA</subfield><subfield code="3">Inhaltsverzeichnis</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027923293</subfield></datafield></record></collection>
id DE-604.BV042488459
illustrated Illustrated
indexdate 2024-12-24T04:25:37Z
institution BVB
isbn 9783319144351
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027923293
oclc_num 907621983
open_access_boolean
owner DE-1050
DE-1043
DE-11
DE-M347
DE-355
DE-BY-UBR
DE-1049
DE-92
DE-521
owner_facet DE-1050
DE-1043
DE-11
DE-M347
DE-355
DE-BY-UBR
DE-1049
DE-92
DE-521
physical XVIII, 454 S. graph. Darst., Kt.
publishDate 2015
publishDateSearch 2015
publishDateSort 2015
publisher Springer
record_format marc
series2 Use R!
spellingShingle Chapman, Chris
Feit, Elea McDonnell
R for marketing research and analytics
Statistics
Mathematical statistics
Economics / Statistics
Marketing
Statistics for Business/Economics/Mathematical Finance/Insurance
Statistics and Computing/Statistics Programs
Statistik
Wirtschaft
R Programm (DE-588)4705956-4 gnd
Statistik (DE-588)4056995-0 gnd
Marketingforschung (DE-588)4200055-5 gnd
subject_GND (DE-588)4705956-4
(DE-588)4056995-0
(DE-588)4200055-5
title R for marketing research and analytics
title_auth R for marketing research and analytics
title_exact_search R for marketing research and analytics
title_full R for marketing research and analytics Chris Chapman ; Elea McDonnell Feit
title_fullStr R for marketing research and analytics Chris Chapman ; Elea McDonnell Feit
title_full_unstemmed R for marketing research and analytics Chris Chapman ; Elea McDonnell Feit
title_short R for marketing research and analytics
title_sort r for marketing research and analytics
topic Statistics
Mathematical statistics
Economics / Statistics
Marketing
Statistics for Business/Economics/Mathematical Finance/Insurance
Statistics and Computing/Statistics Programs
Statistik
Wirtschaft
R Programm (DE-588)4705956-4 gnd
Statistik (DE-588)4056995-0 gnd
Marketingforschung (DE-588)4200055-5 gnd
topic_facet Statistics
Mathematical statistics
Economics / Statistics
Marketing
Statistics for Business/Economics/Mathematical Finance/Insurance
Statistics and Computing/Statistics Programs
Statistik
Wirtschaft
R Programm
Marketingforschung
url http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&local_base=BVB01&doc_number=027923293&sequence=000002&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA
work_keys_str_mv AT chapmanchris rformarketingresearchandanalytics
AT feiteleamcdonnell rformarketingresearchandanalytics