Kähler Differentials

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kunz, Ernst (VerfasserIn)
Format: Elektronisch E-Book
Sprache:German
Veröffentlicht: Wiesbaden Vieweg+Teubner Verlag 1986
Schriftenreihe:Advanced Lectures in Mathematics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042452259
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150324s1986 xx o|||| 00||| ger d
020 |a 9783663140740  |c Online  |9 978-3-663-14074-0 
020 |a 9783528089733  |c Print  |9 978-3-528-08973-3 
024 7 |a 10.1007/978-3-663-14074-0  |2 doi 
035 |a (OCoLC)860330442 
035 |a (DE-599)BVBBV042452259 
040 |a DE-604  |b ger  |e aacr 
041 0 |a ger 
049 |a DE-91  |a DE-634  |a DE-92  |a DE-706 
082 0 |a 515.353  |2 23 
084 |a NAT 000  |2 stub 
100 1 |a Kunz, Ernst  |e Verfasser  |4 aut 
245 1 0 |a Kähler Differentials  |c von Ernst Kunz 
264 1 |a Wiesbaden  |b Vieweg+Teubner Verlag  |c 1986 
300 |a 1 Online-Ressource (VII, 402 S.) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Advanced Lectures in Mathematics  |x 0932-7134 
500 |a This book is based on a lecture course that I gave at the University of Regensburg. The purpose of these lectures was to explain the role of Kähler differential forms in ring theory, to prepare the road for their application in algebraic geometry, and to lead up to some research problems. The text discusses almost exclusively local questions and is therefore written in the language of commutative alge­ bra. The translation into the language of algebraic geometry is easy for the reader who is familiar with sheaf theory and the theory of schemes. The principal goals of the monograph are: To display the information contained in the algebra of Kähler differential forms (de Rham algebra) of a commutative algebra, to int- duce and discuss "differential invariants" of algebras, and to prove theorems about algebras with "differential methods". The most important object we study is the module of Kähler differentials n~/R of an algebra SIR. Like the differentials of analysis, differential modules "linearize" problems, i.e. reduce questions about algebras (non-linear problems) to questions of linear algebra. We are mainly interested in algebras of finite type 
650 4 |a Mathematics 
650 4 |a Functional equations 
650 4 |a Differential equations, partial 
650 4 |a Partial Differential Equations 
650 4 |a Difference and Functional Equations 
650 4 |a Mathematics, general 
650 4 |a Mathematik 
650 0 7 |a Ringtheorie  |0 (DE-588)4126571-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Kähler-Differentialform  |0 (DE-588)4125301-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Kähler-Differentialform  |0 (DE-588)4125301-2  |D s 
689 0 1 |a Ringtheorie  |0 (DE-588)4126571-3  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-663-14074-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-SNA 
912 |a ZDB-2-BAD 
940 1 |q ZDB-2-SNA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027887505 

Datensatz im Suchindex

DE-BY-TUM_katkey 2092042
_version_ 1820875375371091969
any_adam_object
author Kunz, Ernst
author_facet Kunz, Ernst
author_role aut
author_sort Kunz, Ernst
author_variant e k ek
building Verbundindex
bvnumber BV042452259
classification_tum NAT 000
collection ZDB-2-SNA
ZDB-2-BAD
ctrlnum (OCoLC)860330442
(DE-599)BVBBV042452259
dewey-full 515.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.353
dewey-search 515.353
dewey-sort 3515.353
dewey-tens 510 - Mathematics
discipline Allgemeine Naturwissenschaft
Mathematik
doi_str_mv 10.1007/978-3-663-14074-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02962nam a2200529zc 4500</leader><controlfield tag="001">BV042452259</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150324s1986 xx o|||| 00||| ger d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783663140740</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-663-14074-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783528089733</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-528-08973-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-663-14074-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860330442</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042452259</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">ger</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-92</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">NAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kunz, Ernst</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Kähler Differentials</subfield><subfield code="c">von Ernst Kunz</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 402 S.)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Lectures in Mathematics</subfield><subfield code="x">0932-7134</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on a lecture course that I gave at the University of Regensburg. The purpose of these lectures was to explain the role of Kähler differential forms in ring theory, to prepare the road for their application in algebraic geometry, and to lead up to some research problems. The text discusses almost exclusively local questions and is therefore written in the language of commutative alge­ bra. The translation into the language of algebraic geometry is easy for the reader who is familiar with sheaf theory and the theory of schemes. The principal goals of the monograph are: To display the information contained in the algebra of Kähler differential forms (de Rham algebra) of a commutative algebra, to int- duce and discuss "differential invariants" of algebras, and to prove theorems about algebras with "differential methods". The most important object we study is the module of Kähler differentials n~/R of an algebra SIR. Like the differentials of analysis, differential modules "linearize" problems, i.e. reduce questions about algebras (non-linear problems) to questions of linear algebra. We are mainly interested in algebras of finite type</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kähler-Differentialform</subfield><subfield code="0">(DE-588)4125301-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kähler-Differentialform</subfield><subfield code="0">(DE-588)4125301-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Ringtheorie</subfield><subfield code="0">(DE-588)4126571-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-663-14074-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SNA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAD</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SNA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027887505</subfield></datafield></record></collection>
id DE-604.BV042452259
illustrated Not Illustrated
indexdate 2024-12-24T04:24:19Z
institution BVB
isbn 9783663140740
9783528089733
issn 0932-7134
language German
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027887505
oclc_num 860330442
open_access_boolean
owner DE-91
DE-BY-TUM
DE-634
DE-92
DE-706
owner_facet DE-91
DE-BY-TUM
DE-634
DE-92
DE-706
physical 1 Online-Ressource (VII, 402 S.)
psigel ZDB-2-SNA
ZDB-2-BAD
ZDB-2-SNA_Archive
publishDate 1986
publishDateSearch 1986
publishDateSort 1986
publisher Vieweg+Teubner Verlag
record_format marc
series2 Advanced Lectures in Mathematics
spellingShingle Kunz, Ernst
Kähler Differentials
Mathematics
Functional equations
Differential equations, partial
Partial Differential Equations
Difference and Functional Equations
Mathematics, general
Mathematik
Ringtheorie (DE-588)4126571-3 gnd
Kähler-Differentialform (DE-588)4125301-2 gnd
subject_GND (DE-588)4126571-3
(DE-588)4125301-2
title Kähler Differentials
title_auth Kähler Differentials
title_exact_search Kähler Differentials
title_full Kähler Differentials von Ernst Kunz
title_fullStr Kähler Differentials von Ernst Kunz
title_full_unstemmed Kähler Differentials von Ernst Kunz
title_short Kähler Differentials
title_sort kahler differentials
topic Mathematics
Functional equations
Differential equations, partial
Partial Differential Equations
Difference and Functional Equations
Mathematics, general
Mathematik
Ringtheorie (DE-588)4126571-3 gnd
Kähler-Differentialform (DE-588)4125301-2 gnd
topic_facet Mathematics
Functional equations
Differential equations, partial
Partial Differential Equations
Difference and Functional Equations
Mathematics, general
Mathematik
Ringtheorie
Kähler-Differentialform
url https://doi.org/10.1007/978-3-663-14074-0
work_keys_str_mv AT kunzernst kahlerdifferentials