White Noise An Infinite Dimensional Calculus

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hida, Takeyuki (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1993
Schriftenreihe:Mathematics and Its Applications 253
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424329
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1993 xx o|||| 00||| eng d
020 |a 9789401736800  |c Online  |9 978-94-017-3680-0 
020 |a 9789048142606  |c Print  |9 978-90-481-4260-6 
024 7 |a 10.1007/978-94-017-3680-0  |2 doi 
035 |a (OCoLC)879623169 
035 |a (DE-599)BVBBV042424329 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 519.2  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Hida, Takeyuki  |e Verfasser  |4 aut 
245 1 0 |a White Noise  |b An Infinite Dimensional Calculus  |c by Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, Ludwig Streit 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1993 
300 |a 1 Online-Ressource (XIV, 520 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 253 
500 |a Many areas of applied mathematics call for an efficient calculus in infinite dimensions. This is most apparent in quantum physics and in all disciplines of science which describe natural phenomena by equations involving stochasticity. With this monograph we intend to provide a framework for analysis in infinite dimensions which is flexible enough to be applicable in many areas, and which on the other hand is intuitive and efficient. Whether or not we achieved our aim must be left to the judgment of the reader. This book treats the theory and applications of analysis and functional analysis in infinite dimensions based on white noise. By white noise we mean the generalized Gaussian process which is (informally) given by the time derivative of the Wiener process, i.e., by the velocity of Brownian mdtion. Therefore, in essence we present analysis on a Gaussian space, and applications to various areas of sClence. Calculus, analysis, and functional analysis in infinite dimensions (or dimension-free formulations of these parts of classical mathematics) have a long history. Early examples can be found in the works of Dirichlet, Euler, Hamilton, Lagrange, and Riemann on variational problems. At the beginning of this century, Frechet, Gateaux and Volterra made essential contributions to the calculus of functions over infinite dimensional spaces. The important and inspiring work of Wiener and Levy followed during the first half of this century. Moreover, the articles and books of Wiener and Levy had a view towards probability theory 
650 4 |a Mathematics 
650 4 |a Distribution (Probability theory) 
650 4 |a Quantum theory 
650 4 |a Computer engineering 
650 4 |a Probability Theory and Stochastic Processes 
650 4 |a Quantum Physics 
650 4 |a Electrical Engineering 
650 4 |a Mathematik 
650 4 |a Quantentheorie 
650 0 7 |a Funktionalanalysis  |0 (DE-588)4018916-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Weißes Rauschen  |0 (DE-588)4189502-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Gauß-Prozess  |0 (DE-588)4156111-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Weißes Rauschen  |0 (DE-588)4189502-2  |D s 
689 0 1 |a Funktionalanalysis  |0 (DE-588)4018916-8  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Gauß-Prozess  |0 (DE-588)4156111-9  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a Kuo, Hui-Hsiung  |e Sonstige  |4 oth 
700 1 |a Potthoff, Jürgen  |e Sonstige  |4 oth 
700 1 |a Streit, Ludwig  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-94-017-3680-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859746 

Datensatz im Suchindex

_version_ 1819294260007010304
any_adam_object
author Hida, Takeyuki
author_facet Hida, Takeyuki
author_role aut
author_sort Hida, Takeyuki
author_variant t h th
building Verbundindex
bvnumber BV042424329
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879623169
(DE-599)BVBBV042424329
dewey-full 519.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.2
dewey-search 519.2
dewey-sort 3519.2
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-017-3680-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03838nam a2200637zcb4500</leader><controlfield tag="001">BV042424329</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401736800</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-3680-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048142606</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4260-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-3680-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623169</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424329</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hida, Takeyuki</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">White Noise</subfield><subfield code="b">An Infinite Dimensional Calculus</subfield><subfield code="c">by Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, Ludwig Streit</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 520 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">253</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Many areas of applied mathematics call for an efficient calculus in infinite dimensions. This is most apparent in quantum physics and in all disciplines of science which describe natural phenomena by equations involving stochasticity. With this monograph we intend to provide a framework for analysis in infinite dimensions which is flexible enough to be applicable in many areas, and which on the other hand is intuitive and efficient. Whether or not we achieved our aim must be left to the judgment of the reader. This book treats the theory and applications of analysis and functional analysis in infinite dimensions based on white noise. By white noise we mean the generalized Gaussian process which is (informally) given by the time derivative of the Wiener process, i.e., by the velocity of Brownian mdtion. Therefore, in essence we present analysis on a Gaussian space, and applications to various areas of sClence. Calculus, analysis, and functional analysis in infinite dimensions (or dimension-free formulations of these parts of classical mathematics) have a long history. Early examples can be found in the works of Dirichlet, Euler, Hamilton, Lagrange, and Riemann on variational problems. At the beginning of this century, Frechet, Gateaux and Volterra made essential contributions to the calculus of functions over infinite dimensional spaces. The important and inspiring work of Wiener and Levy followed during the first half of this century. Moreover, the articles and books of Wiener and Levy had a view towards probability theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electrical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Weißes Rauschen</subfield><subfield code="0">(DE-588)4189502-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Weißes Rauschen</subfield><subfield code="0">(DE-588)4189502-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionalanalysis</subfield><subfield code="0">(DE-588)4018916-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gauß-Prozess</subfield><subfield code="0">(DE-588)4156111-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kuo, Hui-Hsiung</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Potthoff, Jürgen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Streit, Ludwig</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-3680-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859746</subfield></datafield></record></collection>
id DE-604.BV042424329
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401736800
9789048142606
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859746
oclc_num 879623169
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XIV, 520 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Hida, Takeyuki Verfasser aut
White Noise An Infinite Dimensional Calculus by Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, Ludwig Streit
Dordrecht Springer Netherlands 1993
1 Online-Ressource (XIV, 520 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 253
Many areas of applied mathematics call for an efficient calculus in infinite dimensions. This is most apparent in quantum physics and in all disciplines of science which describe natural phenomena by equations involving stochasticity. With this monograph we intend to provide a framework for analysis in infinite dimensions which is flexible enough to be applicable in many areas, and which on the other hand is intuitive and efficient. Whether or not we achieved our aim must be left to the judgment of the reader. This book treats the theory and applications of analysis and functional analysis in infinite dimensions based on white noise. By white noise we mean the generalized Gaussian process which is (informally) given by the time derivative of the Wiener process, i.e., by the velocity of Brownian mdtion. Therefore, in essence we present analysis on a Gaussian space, and applications to various areas of sClence. Calculus, analysis, and functional analysis in infinite dimensions (or dimension-free formulations of these parts of classical mathematics) have a long history. Early examples can be found in the works of Dirichlet, Euler, Hamilton, Lagrange, and Riemann on variational problems. At the beginning of this century, Frechet, Gateaux and Volterra made essential contributions to the calculus of functions over infinite dimensional spaces. The important and inspiring work of Wiener and Levy followed during the first half of this century. Moreover, the articles and books of Wiener and Levy had a view towards probability theory
Mathematics
Distribution (Probability theory)
Quantum theory
Computer engineering
Probability Theory and Stochastic Processes
Quantum Physics
Electrical Engineering
Mathematik
Quantentheorie
Funktionalanalysis (DE-588)4018916-8 gnd rswk-swf
Weißes Rauschen (DE-588)4189502-2 gnd rswk-swf
Gauß-Prozess (DE-588)4156111-9 gnd rswk-swf
Weißes Rauschen (DE-588)4189502-2 s
Funktionalanalysis (DE-588)4018916-8 s
1\p DE-604
Gauß-Prozess (DE-588)4156111-9 s
2\p DE-604
Kuo, Hui-Hsiung Sonstige oth
Potthoff, Jürgen Sonstige oth
Streit, Ludwig Sonstige oth
https://doi.org/10.1007/978-94-017-3680-0 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Hida, Takeyuki
White Noise An Infinite Dimensional Calculus
Mathematics
Distribution (Probability theory)
Quantum theory
Computer engineering
Probability Theory and Stochastic Processes
Quantum Physics
Electrical Engineering
Mathematik
Quantentheorie
Funktionalanalysis (DE-588)4018916-8 gnd
Weißes Rauschen (DE-588)4189502-2 gnd
Gauß-Prozess (DE-588)4156111-9 gnd
subject_GND (DE-588)4018916-8
(DE-588)4189502-2
(DE-588)4156111-9
title White Noise An Infinite Dimensional Calculus
title_auth White Noise An Infinite Dimensional Calculus
title_exact_search White Noise An Infinite Dimensional Calculus
title_full White Noise An Infinite Dimensional Calculus by Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, Ludwig Streit
title_fullStr White Noise An Infinite Dimensional Calculus by Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, Ludwig Streit
title_full_unstemmed White Noise An Infinite Dimensional Calculus by Takeyuki Hida, Hui-Hsiung Kuo, Jürgen Potthoff, Ludwig Streit
title_short White Noise
title_sort white noise an infinite dimensional calculus
title_sub An Infinite Dimensional Calculus
topic Mathematics
Distribution (Probability theory)
Quantum theory
Computer engineering
Probability Theory and Stochastic Processes
Quantum Physics
Electrical Engineering
Mathematik
Quantentheorie
Funktionalanalysis (DE-588)4018916-8 gnd
Weißes Rauschen (DE-588)4189502-2 gnd
Gauß-Prozess (DE-588)4156111-9 gnd
topic_facet Mathematics
Distribution (Probability theory)
Quantum theory
Computer engineering
Probability Theory and Stochastic Processes
Quantum Physics
Electrical Engineering
Mathematik
Quantentheorie
Funktionalanalysis
Weißes Rauschen
Gauß-Prozess
url https://doi.org/10.1007/978-94-017-3680-0
work_keys_str_mv AT hidatakeyuki whitenoiseaninfinitedimensionalcalculus
AT kuohuihsiung whitenoiseaninfinitedimensionalcalculus
AT potthoffjurgen whitenoiseaninfinitedimensionalcalculus
AT streitludwig whitenoiseaninfinitedimensionalcalculus