Theory of U-Statistics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Koroljuk, V. S. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1994
Schriftenreihe:Mathematics and Its Applications 273
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424325
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1994 xx o|||| 00||| eng d
020 |a 9789401735155  |c Online  |9 978-94-017-3515-5 
020 |a 9789048143467  |c Print  |9 978-90-481-4346-7 
024 7 |a 10.1007/978-94-017-3515-5  |2 doi 
035 |a (OCoLC)1165486413 
035 |a (DE-599)BVBBV042424325 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 519.5  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Koroljuk, V. S.  |e Verfasser  |4 aut 
245 1 0 |a Theory of U-Statistics  |c by V. S. Koroljuk, Yu. V. Borovskich 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1994 
300 |a 1 Online-Ressource (X, 554 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 273 
500 |a The theory of U-statistics goes back to the fundamental work of Hoeffding [1], in which he proved the central limit theorem. During last forty years the interest to this class of random variables has been permanently increasing, and thus, the new intensively developing branch of probability theory has been formed. The U-statistics are one of the universal objects of the modem probability theory of summation. On the one hand, they are more complicated "algebraically" than sums of independent random variables and vectors, and on the other hand, they contain essential elements of dependence which display themselves in the martingale properties. In addition, the U -statistics as an object of mathematical statistics occupy one of the central places in statistical problems. The development of the theory of U-statistics is stipulated by the influence of the classical theory of summation of independent random variables: The law of large num­ bers, central limit theorem, invariance principle, and the law of the iterated logarithm we re proved, the estimates of convergence rate were obtained, etc 
650 4 |a Statistics 
650 4 |a Statistics, general 
650 4 |a Statistik 
650 0 7 |a Statistik  |0 (DE-588)4056995-0  |2 gnd  |9 rswk-swf 
650 0 7 |a U-Statistik  |0 (DE-588)4754777-7  |2 gnd  |9 rswk-swf 
650 0 7 |a U-Stichprobenfunktion  |0 (DE-588)4279548-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Grenzwertsatz  |0 (DE-588)4158163-5  |2 gnd  |9 rswk-swf 
689 0 0 |a U-Stichprobenfunktion  |0 (DE-588)4279548-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Grenzwertsatz  |0 (DE-588)4158163-5  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a U-Statistik  |0 (DE-588)4754777-7  |D s 
689 2 |8 3\p  |5 DE-604 
689 3 0 |a Statistik  |0 (DE-588)4056995-0  |D s 
689 3 |8 4\p  |5 DE-604 
700 1 |a Borovskich, Yu. V.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-94-017-3515-5  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859742 

Datensatz im Suchindex

_version_ 1819294260008058880
any_adam_object
author Koroljuk, V. S.
author_facet Koroljuk, V. S.
author_role aut
author_sort Koroljuk, V. S.
author_variant v s k vs vsk
building Verbundindex
bvnumber BV042424325
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1165486413
(DE-599)BVBBV042424325
dewey-full 519.5
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 519 - Probabilities and applied mathematics
dewey-raw 519.5
dewey-search 519.5
dewey-sort 3519.5
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-017-3515-5
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03336nam a2200613zcb4500</leader><controlfield tag="001">BV042424325</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401735155</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-3515-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048143467</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4346-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-3515-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165486413</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424325</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.5</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Koroljuk, V. S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of U-Statistics</subfield><subfield code="c">by V. S. Koroljuk, Yu. V. Borovskich</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 554 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">273</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The theory of U-statistics goes back to the fundamental work of Hoeffding [1], in which he proved the central limit theorem. During last forty years the interest to this class of random variables has been permanently increasing, and thus, the new intensively developing branch of probability theory has been formed. The U-statistics are one of the universal objects of the modem probability theory of summation. On the one hand, they are more complicated "algebraically" than sums of independent random variables and vectors, and on the other hand, they contain essential elements of dependence which display themselves in the martingale properties. In addition, the U -statistics as an object of mathematical statistics occupy one of the central places in statistical problems. The development of the theory of U-statistics is stipulated by the influence of the classical theory of summation of independent random variables: The law of large num­ bers, central limit theorem, invariance principle, and the law of the iterated logarithm we re proved, the estimates of convergence rate were obtained, etc</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">U-Statistik</subfield><subfield code="0">(DE-588)4754777-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">U-Stichprobenfunktion</subfield><subfield code="0">(DE-588)4279548-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Grenzwertsatz</subfield><subfield code="0">(DE-588)4158163-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">U-Stichprobenfunktion</subfield><subfield code="0">(DE-588)4279548-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Grenzwertsatz</subfield><subfield code="0">(DE-588)4158163-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">U-Statistik</subfield><subfield code="0">(DE-588)4754777-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Statistik</subfield><subfield code="0">(DE-588)4056995-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Borovskich, Yu. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-3515-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859742</subfield></datafield></record></collection>
id DE-604.BV042424325
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401735155
9789048143467
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859742
oclc_num 1165486413
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 554 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Koroljuk, V. S. Verfasser aut
Theory of U-Statistics by V. S. Koroljuk, Yu. V. Borovskich
Dordrecht Springer Netherlands 1994
1 Online-Ressource (X, 554 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 273
The theory of U-statistics goes back to the fundamental work of Hoeffding [1], in which he proved the central limit theorem. During last forty years the interest to this class of random variables has been permanently increasing, and thus, the new intensively developing branch of probability theory has been formed. The U-statistics are one of the universal objects of the modem probability theory of summation. On the one hand, they are more complicated "algebraically" than sums of independent random variables and vectors, and on the other hand, they contain essential elements of dependence which display themselves in the martingale properties. In addition, the U -statistics as an object of mathematical statistics occupy one of the central places in statistical problems. The development of the theory of U-statistics is stipulated by the influence of the classical theory of summation of independent random variables: The law of large num­ bers, central limit theorem, invariance principle, and the law of the iterated logarithm we re proved, the estimates of convergence rate were obtained, etc
Statistics
Statistics, general
Statistik
Statistik (DE-588)4056995-0 gnd rswk-swf
U-Statistik (DE-588)4754777-7 gnd rswk-swf
U-Stichprobenfunktion (DE-588)4279548-5 gnd rswk-swf
Grenzwertsatz (DE-588)4158163-5 gnd rswk-swf
U-Stichprobenfunktion (DE-588)4279548-5 s
1\p DE-604
Grenzwertsatz (DE-588)4158163-5 s
2\p DE-604
U-Statistik (DE-588)4754777-7 s
3\p DE-604
Statistik (DE-588)4056995-0 s
4\p DE-604
Borovskich, Yu. V. Sonstige oth
https://doi.org/10.1007/978-94-017-3515-5 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Koroljuk, V. S.
Theory of U-Statistics
Statistics
Statistics, general
Statistik
Statistik (DE-588)4056995-0 gnd
U-Statistik (DE-588)4754777-7 gnd
U-Stichprobenfunktion (DE-588)4279548-5 gnd
Grenzwertsatz (DE-588)4158163-5 gnd
subject_GND (DE-588)4056995-0
(DE-588)4754777-7
(DE-588)4279548-5
(DE-588)4158163-5
title Theory of U-Statistics
title_auth Theory of U-Statistics
title_exact_search Theory of U-Statistics
title_full Theory of U-Statistics by V. S. Koroljuk, Yu. V. Borovskich
title_fullStr Theory of U-Statistics by V. S. Koroljuk, Yu. V. Borovskich
title_full_unstemmed Theory of U-Statistics by V. S. Koroljuk, Yu. V. Borovskich
title_short Theory of U-Statistics
title_sort theory of u statistics
topic Statistics
Statistics, general
Statistik
Statistik (DE-588)4056995-0 gnd
U-Statistik (DE-588)4754777-7 gnd
U-Stichprobenfunktion (DE-588)4279548-5 gnd
Grenzwertsatz (DE-588)4158163-5 gnd
topic_facet Statistics
Statistics, general
Statistik
U-Statistik
U-Stichprobenfunktion
Grenzwertsatz
url https://doi.org/10.1007/978-94-017-3515-5
work_keys_str_mv AT koroljukvs theoryofustatistics
AT borovskichyuv theoryofustatistics