Focal Boundary Value Problems for Differential and Difference Equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Agarwal, Ravi P. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1998
Schriftenreihe:Mathematics and Its Applications 436
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424256
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1998 xx o|||| 00||| eng d
020 |a 9789401715683  |c Online  |9 978-94-017-1568-3 
020 |a 9789048150052  |c Print  |9 978-90-481-5005-2 
024 7 |a 10.1007/978-94-017-1568-3  |2 doi 
035 |a (OCoLC)1165450141 
035 |a (DE-599)BVBBV042424256 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.352  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Agarwal, Ravi P.  |e Verfasser  |4 aut 
245 1 0 |a Focal Boundary Value Problems for Differential and Difference Equations  |c by Ravi P. Agarwal 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1998 
300 |a 1 Online-Ressource (X, 294 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 436 
500 |a The last fifty years have witnessed several monographs and hundreds of research articles on the theory, constructive methods and wide spectrum of applications of boundary value problems for ordinary differential equations. In this vast field of research, the conjugate (Hermite) and the right focal point (Abei) types of problems have received the maximum attention. This is largely due to the fact that these types of problems are basic, in the sense that the methods employed in their study are easily extendable to other types of prob­ lems. Moreover, the conjugate and the right focal point types of boundary value problems occur frequently in real world problems. In the monograph Boundary Value Problems for Higher Order Differential Equations published in 1986, we addressed the theory of conjugate boundary value problems. At that time the results on right focal point problems were scarce; however, in the last ten years extensive research has been done. In Chapter 1 of the mono­ graph we offer up-to-date information of this newly developed theory of right focal point boundary value problems. Until twenty years ago Difference Equations were considered as the dis­ cretizations of the differential equations. Further, it was tacitly taken for granted that the theories of difference and differential equations are parallel. However, striking diversities and wide applications reported in the last two decades have made difference equations one of the major areas of research 
650 4 |a Mathematics 
650 4 |a Functional equations 
650 4 |a Differential Equations 
650 4 |a Computer science / Mathematics 
650 4 |a Ordinary Differential Equations 
650 4 |a Difference and Functional Equations 
650 4 |a Applications of Mathematics 
650 4 |a Computational Mathematics and Numerical Analysis 
650 4 |a Real Functions 
650 4 |a Informatik 
650 4 |a Mathematik 
650 0 7 |a Randwertproblem  |0 (DE-588)4048395-2  |2 gnd  |9 rswk-swf 
689 0 0 |a Randwertproblem  |0 (DE-588)4048395-2  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-94-017-1568-3  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859673 

Datensatz im Suchindex

_version_ 1819294259836092416
any_adam_object
author Agarwal, Ravi P.
author_facet Agarwal, Ravi P.
author_role aut
author_sort Agarwal, Ravi P.
author_variant r p a rp rpa
building Verbundindex
bvnumber BV042424256
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1165450141
(DE-599)BVBBV042424256
dewey-full 515.352
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.352
dewey-search 515.352
dewey-sort 3515.352
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-017-1568-3
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03371nam a2200553zcb4500</leader><controlfield tag="001">BV042424256</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401715683</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-1568-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048150052</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5005-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-1568-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165450141</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424256</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agarwal, Ravi P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Focal Boundary Value Problems for Differential and Difference Equations</subfield><subfield code="c">by Ravi P. Agarwal</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 294 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">436</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The last fifty years have witnessed several monographs and hundreds of research articles on the theory, constructive methods and wide spectrum of applications of boundary value problems for ordinary differential equations. In this vast field of research, the conjugate (Hermite) and the right focal point (Abei) types of problems have received the maximum attention. This is largely due to the fact that these types of problems are basic, in the sense that the methods employed in their study are easily extendable to other types of prob­ lems. Moreover, the conjugate and the right focal point types of boundary value problems occur frequently in real world problems. In the monograph Boundary Value Problems for Higher Order Differential Equations published in 1986, we addressed the theory of conjugate boundary value problems. At that time the results on right focal point problems were scarce; however, in the last ten years extensive research has been done. In Chapter 1 of the mono­ graph we offer up-to-date information of this newly developed theory of right focal point boundary value problems. Until twenty years ago Difference Equations were considered as the dis­ cretizations of the differential equations. Further, it was tacitly taken for granted that the theories of difference and differential equations are parallel. However, striking diversities and wide applications reported in the last two decades have made difference equations one of the major areas of research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Difference and Functional Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Real Functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-1568-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859673</subfield></datafield></record></collection>
id DE-604.BV042424256
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401715683
9789048150052
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859673
oclc_num 1165450141
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 294 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Agarwal, Ravi P. Verfasser aut
Focal Boundary Value Problems for Differential and Difference Equations by Ravi P. Agarwal
Dordrecht Springer Netherlands 1998
1 Online-Ressource (X, 294 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 436
The last fifty years have witnessed several monographs and hundreds of research articles on the theory, constructive methods and wide spectrum of applications of boundary value problems for ordinary differential equations. In this vast field of research, the conjugate (Hermite) and the right focal point (Abei) types of problems have received the maximum attention. This is largely due to the fact that these types of problems are basic, in the sense that the methods employed in their study are easily extendable to other types of prob­ lems. Moreover, the conjugate and the right focal point types of boundary value problems occur frequently in real world problems. In the monograph Boundary Value Problems for Higher Order Differential Equations published in 1986, we addressed the theory of conjugate boundary value problems. At that time the results on right focal point problems were scarce; however, in the last ten years extensive research has been done. In Chapter 1 of the mono­ graph we offer up-to-date information of this newly developed theory of right focal point boundary value problems. Until twenty years ago Difference Equations were considered as the dis­ cretizations of the differential equations. Further, it was tacitly taken for granted that the theories of difference and differential equations are parallel. However, striking diversities and wide applications reported in the last two decades have made difference equations one of the major areas of research
Mathematics
Functional equations
Differential Equations
Computer science / Mathematics
Ordinary Differential Equations
Difference and Functional Equations
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Real Functions
Informatik
Mathematik
Randwertproblem (DE-588)4048395-2 gnd rswk-swf
Randwertproblem (DE-588)4048395-2 s
1\p DE-604
https://doi.org/10.1007/978-94-017-1568-3 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Agarwal, Ravi P.
Focal Boundary Value Problems for Differential and Difference Equations
Mathematics
Functional equations
Differential Equations
Computer science / Mathematics
Ordinary Differential Equations
Difference and Functional Equations
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Real Functions
Informatik
Mathematik
Randwertproblem (DE-588)4048395-2 gnd
subject_GND (DE-588)4048395-2
title Focal Boundary Value Problems for Differential and Difference Equations
title_auth Focal Boundary Value Problems for Differential and Difference Equations
title_exact_search Focal Boundary Value Problems for Differential and Difference Equations
title_full Focal Boundary Value Problems for Differential and Difference Equations by Ravi P. Agarwal
title_fullStr Focal Boundary Value Problems for Differential and Difference Equations by Ravi P. Agarwal
title_full_unstemmed Focal Boundary Value Problems for Differential and Difference Equations by Ravi P. Agarwal
title_short Focal Boundary Value Problems for Differential and Difference Equations
title_sort focal boundary value problems for differential and difference equations
topic Mathematics
Functional equations
Differential Equations
Computer science / Mathematics
Ordinary Differential Equations
Difference and Functional Equations
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Real Functions
Informatik
Mathematik
Randwertproblem (DE-588)4048395-2 gnd
topic_facet Mathematics
Functional equations
Differential Equations
Computer science / Mathematics
Ordinary Differential Equations
Difference and Functional Equations
Applications of Mathematics
Computational Mathematics and Numerical Analysis
Real Functions
Informatik
Mathematik
Randwertproblem
url https://doi.org/10.1007/978-94-017-1568-3
work_keys_str_mv AT agarwalravip focalboundaryvalueproblemsfordifferentialanddifferenceequations