Existence Theory for Nonlinear Ordinary Differential Equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: O’Regan, Donal (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1997
Schriftenreihe:Mathematics and Its Applications 398
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424253
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1997 xx o|||| 00||| eng d
020 |a 9789401715171  |c Online  |9 978-94-017-1517-1 
020 |a 9789048148356  |c Print  |9 978-90-481-4835-6 
024 7 |a 10.1007/978-94-017-1517-1  |2 doi 
035 |a (OCoLC)1184493444 
035 |a (DE-599)BVBBV042424253 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.352  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a O’Regan, Donal  |e Verfasser  |4 aut 
245 1 0 |a Existence Theory for Nonlinear Ordinary Differential Equations  |c by Donal O’Regan 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1997 
300 |a 1 Online-Ressource (VII, 200 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 398 
500 |a We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de­ fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi­ trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here 
650 4 |a Mathematics 
650 4 |a Integral equations 
650 4 |a Operator theory 
650 4 |a Differential Equations 
650 4 |a Ordinary Differential Equations 
650 4 |a Integral Equations 
650 4 |a Operator Theory 
650 4 |a Mathematik 
650 0 7 |a Anfangswertproblem  |0 (DE-588)4001991-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Existenzaussage  |0 (DE-588)4153313-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Randwertproblem  |0 (DE-588)4048395-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare gewöhnliche Differentialgleichung  |0 (DE-588)4478411-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Existenzsatz  |0 (DE-588)4297175-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Nichtlineare gewöhnliche Differentialgleichung  |0 (DE-588)4478411-9  |D s 
689 0 1 |a Anfangswertproblem  |0 (DE-588)4001991-3  |D s 
689 0 2 |a Existenzsatz  |0 (DE-588)4297175-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Nichtlineare gewöhnliche Differentialgleichung  |0 (DE-588)4478411-9  |D s 
689 1 1 |a Randwertproblem  |0 (DE-588)4048395-2  |D s 
689 1 2 |a Existenzsatz  |0 (DE-588)4297175-5  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Nichtlineare gewöhnliche Differentialgleichung  |0 (DE-588)4478411-9  |D s 
689 2 1 |a Existenzaussage  |0 (DE-588)4153313-6  |D s 
689 2 |8 3\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-94-017-1517-1  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859670 

Datensatz im Suchindex

_version_ 1819294259828752384
any_adam_object
author O’Regan, Donal
author_facet O’Regan, Donal
author_role aut
author_sort O’Regan, Donal
author_variant d o do
building Verbundindex
bvnumber BV042424253
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184493444
(DE-599)BVBBV042424253
dewey-full 515.352
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.352
dewey-search 515.352
dewey-sort 3515.352
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-017-1517-1
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03987nam a2200697zcb4500</leader><controlfield tag="001">BV042424253</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401715171</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-1517-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048148356</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4835-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-1517-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184493444</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424253</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.352</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">O’Regan, Donal</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Existence Theory for Nonlinear Ordinary Differential Equations</subfield><subfield code="c">by Donal O’Regan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 200 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">398</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de­ fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t &gt; 0 and near zero. Familiar examples show that the interval of existence can be arbi­ trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Existenzaussage</subfield><subfield code="0">(DE-588)4153313-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Existenzsatz</subfield><subfield code="0">(DE-588)4297175-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Existenzsatz</subfield><subfield code="0">(DE-588)4297175-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Existenzsatz</subfield><subfield code="0">(DE-588)4297175-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare gewöhnliche Differentialgleichung</subfield><subfield code="0">(DE-588)4478411-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Existenzaussage</subfield><subfield code="0">(DE-588)4153313-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-1517-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859670</subfield></datafield></record></collection>
id DE-604.BV042424253
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401715171
9789048148356
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859670
oclc_num 1184493444
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VII, 200 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1997
publishDateSearch 1997
publishDateSort 1997
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling O’Regan, Donal Verfasser aut
Existence Theory for Nonlinear Ordinary Differential Equations by Donal O’Regan
Dordrecht Springer Netherlands 1997
1 Online-Ressource (VII, 200 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 398
We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de­ fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi­ trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here
Mathematics
Integral equations
Operator theory
Differential Equations
Ordinary Differential Equations
Integral Equations
Operator Theory
Mathematik
Anfangswertproblem (DE-588)4001991-3 gnd rswk-swf
Existenzaussage (DE-588)4153313-6 gnd rswk-swf
Randwertproblem (DE-588)4048395-2 gnd rswk-swf
Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd rswk-swf
Existenzsatz (DE-588)4297175-5 gnd rswk-swf
Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 s
Anfangswertproblem (DE-588)4001991-3 s
Existenzsatz (DE-588)4297175-5 s
1\p DE-604
Randwertproblem (DE-588)4048395-2 s
2\p DE-604
Existenzaussage (DE-588)4153313-6 s
3\p DE-604
https://doi.org/10.1007/978-94-017-1517-1 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle O’Regan, Donal
Existence Theory for Nonlinear Ordinary Differential Equations
Mathematics
Integral equations
Operator theory
Differential Equations
Ordinary Differential Equations
Integral Equations
Operator Theory
Mathematik
Anfangswertproblem (DE-588)4001991-3 gnd
Existenzaussage (DE-588)4153313-6 gnd
Randwertproblem (DE-588)4048395-2 gnd
Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd
Existenzsatz (DE-588)4297175-5 gnd
subject_GND (DE-588)4001991-3
(DE-588)4153313-6
(DE-588)4048395-2
(DE-588)4478411-9
(DE-588)4297175-5
title Existence Theory for Nonlinear Ordinary Differential Equations
title_auth Existence Theory for Nonlinear Ordinary Differential Equations
title_exact_search Existence Theory for Nonlinear Ordinary Differential Equations
title_full Existence Theory for Nonlinear Ordinary Differential Equations by Donal O’Regan
title_fullStr Existence Theory for Nonlinear Ordinary Differential Equations by Donal O’Regan
title_full_unstemmed Existence Theory for Nonlinear Ordinary Differential Equations by Donal O’Regan
title_short Existence Theory for Nonlinear Ordinary Differential Equations
title_sort existence theory for nonlinear ordinary differential equations
topic Mathematics
Integral equations
Operator theory
Differential Equations
Ordinary Differential Equations
Integral Equations
Operator Theory
Mathematik
Anfangswertproblem (DE-588)4001991-3 gnd
Existenzaussage (DE-588)4153313-6 gnd
Randwertproblem (DE-588)4048395-2 gnd
Nichtlineare gewöhnliche Differentialgleichung (DE-588)4478411-9 gnd
Existenzsatz (DE-588)4297175-5 gnd
topic_facet Mathematics
Integral equations
Operator theory
Differential Equations
Ordinary Differential Equations
Integral Equations
Operator Theory
Mathematik
Anfangswertproblem
Existenzaussage
Randwertproblem
Nichtlineare gewöhnliche Differentialgleichung
Existenzsatz
url https://doi.org/10.1007/978-94-017-1517-1
work_keys_str_mv AT oregandonal existencetheoryfornonlinearordinarydifferentialequations