Differential and Difference Dimension Polynomials

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kondratieva, M. V. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1999
Schriftenreihe:Mathematics and Its Applications 461
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424242
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1999 xx o|||| 00||| eng d
020 |a 9789401712576  |c Online  |9 978-94-017-1257-6 
020 |a 9789048151417  |c Print  |9 978-90-481-5141-7 
024 7 |a 10.1007/978-94-017-1257-6  |2 doi 
035 |a (OCoLC)905373021 
035 |a (DE-599)BVBBV042424242 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Kondratieva, M. V.  |e Verfasser  |4 aut 
245 1 0 |a Differential and Difference Dimension Polynomials  |c by M. V. Kondratieva, A. B. Levin, A. V. Mikhalev, E. V. Pankratiev 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1999 
300 |a 1 Online-Ressource (XIII, 422 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 461 
500 |a The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen­ tial equations were actively developed by F. Riquier [RiqlO] and M. 
650 4 |a Mathematics 
650 4 |a Algebra 
650 4 |a Differential equations, partial 
650 4 |a Combinatorics 
650 4 |a Partial Differential Equations 
650 4 |a Mathematik 
700 1 |a Levin, A. B.  |e Sonstige  |4 oth 
700 1 |a Mikhalev, A. V.  |e Sonstige  |4 oth 
700 1 |a Pankratiev, E. V.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-94-017-1257-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859659 

Datensatz im Suchindex

_version_ 1819294259823509504
any_adam_object
author Kondratieva, M. V.
author_facet Kondratieva, M. V.
author_role aut
author_sort Kondratieva, M. V.
author_variant m v k mv mvk
building Verbundindex
bvnumber BV042424242
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)905373021
(DE-599)BVBBV042424242
dewey-full 512
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512
dewey-search 512
dewey-sort 3512
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-017-1257-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03002nam a2200481zcb4500</leader><controlfield tag="001">BV042424242</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401712576</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-1257-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048151417</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5141-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-1257-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905373021</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kondratieva, M. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Differential and Difference Dimension Polynomials</subfield><subfield code="c">by M. V. Kondratieva, A. B. Levin, A. V. Mikhalev, E. V. Pankratiev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 422 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">461</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen­ tial equations were actively developed by F. Riquier [RiqlO] and M.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Levin, A. B.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikhalev, A. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pankratiev, E. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-1257-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859659</subfield></datafield></record></collection>
id DE-604.BV042424242
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401712576
9789048151417
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859659
oclc_num 905373021
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XIII, 422 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Kondratieva, M. V. Verfasser aut
Differential and Difference Dimension Polynomials by M. V. Kondratieva, A. B. Levin, A. V. Mikhalev, E. V. Pankratiev
Dordrecht Springer Netherlands 1999
1 Online-Ressource (XIII, 422 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 461
The role of Hilbert polynomials in commutative and homological algebra as well as in algebraic geometry and combinatorics is well known. A similar role in differential algebra is played by the differential dimension polynomials. The notion of differential dimension polynomial was introduced by E. Kolchin in 1964 [KoI64]' but the problems and ideas that had led to this notion (and that are reflected in this book) have essentially more long history. Actually, one can say that the differential dimension polynomial describes in exact terms the freedom degree of a dynamic system as well as the number of arbitrary constants in the general solution of a system of algebraic differential equations. The first attempts of such description were made at the end of 19th century by Jacobi [Ja890] who estimated the number of algebraically independent constants in the general solution of a system of linear ordinary differential equations. Later on, Jacobi's results were extended to some cases of nonlinear systems, but in general case the problem of such estimation (that is known as the problem of Jacobi's bound) remains open. There are some generalization of the problem of Jacobi's bound to the partial differential equations, but the results in this area are just appearing. At the beginning of the 20th century algebraic methods in the theory of differen­ tial equations were actively developed by F. Riquier [RiqlO] and M.
Mathematics
Algebra
Differential equations, partial
Combinatorics
Partial Differential Equations
Mathematik
Levin, A. B. Sonstige oth
Mikhalev, A. V. Sonstige oth
Pankratiev, E. V. Sonstige oth
https://doi.org/10.1007/978-94-017-1257-6 Verlag Volltext
spellingShingle Kondratieva, M. V.
Differential and Difference Dimension Polynomials
Mathematics
Algebra
Differential equations, partial
Combinatorics
Partial Differential Equations
Mathematik
title Differential and Difference Dimension Polynomials
title_auth Differential and Difference Dimension Polynomials
title_exact_search Differential and Difference Dimension Polynomials
title_full Differential and Difference Dimension Polynomials by M. V. Kondratieva, A. B. Levin, A. V. Mikhalev, E. V. Pankratiev
title_fullStr Differential and Difference Dimension Polynomials by M. V. Kondratieva, A. B. Levin, A. V. Mikhalev, E. V. Pankratiev
title_full_unstemmed Differential and Difference Dimension Polynomials by M. V. Kondratieva, A. B. Levin, A. V. Mikhalev, E. V. Pankratiev
title_short Differential and Difference Dimension Polynomials
title_sort differential and difference dimension polynomials
topic Mathematics
Algebra
Differential equations, partial
Combinatorics
Partial Differential Equations
Mathematik
topic_facet Mathematics
Algebra
Differential equations, partial
Combinatorics
Partial Differential Equations
Mathematik
url https://doi.org/10.1007/978-94-017-1257-6
work_keys_str_mv AT kondratievamv differentialanddifferencedimensionpolynomials
AT levinab differentialanddifferencedimensionpolynomials
AT mikhalevav differentialanddifferencedimensionpolynomials
AT pankratievev differentialanddifferencedimensionpolynomials