Degenerate Elliptic Equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Levendorskij, Sergej Z. 1951- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1993
Schriftenreihe:Mathematics and Its Applications 258
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042424240
003 DE-604
005 20170918
007 cr|uuu---uuuuu
008 150317s1993 |||| o||u| ||||||eng d
020 |a 9789401712156  |c Online  |9 978-94-017-1215-6 
020 |a 9789048142828  |c Print  |9 978-90-481-4282-8 
024 7 |a 10.1007/978-94-017-1215-6  |2 doi 
035 |a (OCoLC)879623111 
035 |a (DE-599)BVBBV042424240 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.353  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Levendorskij, Sergej Z.  |d 1951-  |e Verfasser  |0 (DE-588)13349876X  |4 aut 
245 1 0 |a Degenerate Elliptic Equations  |c by Serge Levendorskii 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1993 
300 |a 1 Online-Ressource (XII, 436 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Mathematics and Its Applications  |v 258 
500 |a 0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,€) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self-adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self-adjoint operator with discrete spectrum and for the distribution functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e)) are the distribution functions of the matrix a2m(X,e) : C' -+ CU) 
650 4 |a Mathematics 
650 4 |a Integral equations 
650 4 |a Integral Transforms 
650 4 |a Differential equations, partial 
650 4 |a Quantum theory 
650 4 |a Vibration 
650 4 |a Partial Differential Equations 
650 4 |a Vibration, Dynamical Systems, Control 
650 4 |a Quantum Physics 
650 4 |a Integral Transforms, Operational Calculus 
650 4 |a Integral Equations 
650 4 |a Mathematik 
650 4 |a Quantentheorie 
650 0 7 |a Elliptisch entartete Differentialgleichung  |0 (DE-588)4152026-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Elliptische Differentialgleichung  |0 (DE-588)4014485-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 0 1 |a Elliptische Differentialgleichung  |0 (DE-588)4014485-9  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Elliptisch entartete Differentialgleichung  |0 (DE-588)4152026-9  |D s 
689 1 |8 2\p  |5 DE-604 
830 0 |a Mathematics and Its Applications  |v 258  |w (DE-604)BV008163334  |9 258 
856 4 0 |u https://doi.org/10.1007/978-94-017-1215-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027859657 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2071248
_version_ 1816714051150938112
any_adam_object
author Levendorskij, Sergej Z. 1951-
author_GND (DE-588)13349876X
author_facet Levendorskij, Sergej Z. 1951-
author_role aut
author_sort Levendorskij, Sergej Z. 1951-
author_variant s z l sz szl
building Verbundindex
bvnumber BV042424240
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879623111
(DE-599)BVBBV042424240
dewey-full 515.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.353
dewey-search 515.353
dewey-sort 3515.353
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-017-1215-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03521nmm a2200649zcb4500</leader><controlfield tag="001">BV042424240</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170918 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401712156</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-1215-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048142828</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4282-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-1215-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424240</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Levendorskij, Sergej Z.</subfield><subfield code="d">1951-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)13349876X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Degenerate Elliptic Equations</subfield><subfield code="c">by Serge Levendorskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 436 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">258</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,€) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m &gt; 0 and A : C=(O; C') -+ L (0; C') is formally self-adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self-adjoint operator with discrete spectrum and for the distribution functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e)) are the distribution functions of the matrix a2m(X,e) : C' -+ CU)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vibration, Dynamical Systems, Control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Transforms, Operational Calculus</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptisch entartete Differentialgleichung</subfield><subfield code="0">(DE-588)4152026-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elliptisch entartete Differentialgleichung</subfield><subfield code="0">(DE-588)4152026-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">258</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">258</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-1215-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859657</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042424240
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9789401712156
9789048142828
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859657
oclc_num 879623111
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XII, 436 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Springer Netherlands
record_format marc
series Mathematics and Its Applications
series2 Mathematics and Its Applications
spellingShingle Levendorskij, Sergej Z. 1951-
Degenerate Elliptic Equations
Mathematics and Its Applications
Mathematics
Integral equations
Integral Transforms
Differential equations, partial
Quantum theory
Vibration
Partial Differential Equations
Vibration, Dynamical Systems, Control
Quantum Physics
Integral Transforms, Operational Calculus
Integral Equations
Mathematik
Quantentheorie
Elliptisch entartete Differentialgleichung (DE-588)4152026-9 gnd
Elliptische Differentialgleichung (DE-588)4014485-9 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
subject_GND (DE-588)4152026-9
(DE-588)4014485-9
(DE-588)4044779-0
title Degenerate Elliptic Equations
title_auth Degenerate Elliptic Equations
title_exact_search Degenerate Elliptic Equations
title_full Degenerate Elliptic Equations by Serge Levendorskii
title_fullStr Degenerate Elliptic Equations by Serge Levendorskii
title_full_unstemmed Degenerate Elliptic Equations by Serge Levendorskii
title_short Degenerate Elliptic Equations
title_sort degenerate elliptic equations
topic Mathematics
Integral equations
Integral Transforms
Differential equations, partial
Quantum theory
Vibration
Partial Differential Equations
Vibration, Dynamical Systems, Control
Quantum Physics
Integral Transforms, Operational Calculus
Integral Equations
Mathematik
Quantentheorie
Elliptisch entartete Differentialgleichung (DE-588)4152026-9 gnd
Elliptische Differentialgleichung (DE-588)4014485-9 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
topic_facet Mathematics
Integral equations
Integral Transforms
Differential equations, partial
Quantum theory
Vibration
Partial Differential Equations
Vibration, Dynamical Systems, Control
Quantum Physics
Integral Transforms, Operational Calculus
Integral Equations
Mathematik
Quantentheorie
Elliptisch entartete Differentialgleichung
Elliptische Differentialgleichung
Partielle Differentialgleichung
url https://doi.org/10.1007/978-94-017-1215-6
volume_link (DE-604)BV008163334
work_keys_str_mv AT levendorskijsergejz degenerateellipticequations