Degenerate Elliptic Equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Levendorskij, Sergej Z. 1951- (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1993
Schriftenreihe:Mathematics and Its Applications 258
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Beschreibung:0.1 The partial differential equation (1) (Au)(x) = L aa(x)(Dau)(x) = f(x) m lal9 is called elliptic on a set G, provided that the principal symbol a2m(X,€) = L aa(x)€a lal=2m of the operator A is invertible on G X (~n \ 0); A is called elliptic on G, too. This definition works for systems of equations, for classical pseudo differential operators ("pdo), and for operators on a manifold n. Let us recall some facts concerning elliptic operators. 1 If n is closed, then for any s E ~ , is Fredholm and the following a priori estimate holds (2) 1 2 Introduction If m > 0 and A : C=(O; C') -+ L (0; C') is formally self-adjoint 2 with respect to a smooth positive density, then the closure Ao of A is a self-adjoint operator with discrete spectrum and for the distribution functions of the positive and negative eigenvalues (counted with multiplicity) of Ao one has the following Weyl formula: as t -+ 00, (3) n 2m = t / II N±(1,a2m(x,e))dxde T·O\O (on the right hand side, N±(t,a2m(x,e)) are the distribution functions of the matrix a2m(X,e) : C' -+ CU)
Beschreibung:1 Online-Ressource (XII, 436 p)
ISBN:9789401712156
9789048142828
DOI:10.1007/978-94-017-1215-6