Applications of Group-Theoretical Methods in Hydrodynamics

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Andreev, V. K. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1998
Schriftenreihe:Mathematics and Its Applications 450
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042424223
003 DE-604
005 20180108
007 cr|uuu---uuuuu
008 150317s1998 |||| o||u| ||||||eng d
020 |a 9789401707459  |c Online  |9 978-94-017-0745-9 
020 |a 9789048150830  |c Print  |9 978-90-481-5083-0 
024 7 |a 10.1007/978-94-017-0745-9  |2 doi 
035 |a (OCoLC)1184499312 
035 |a (DE-599)BVBBV042424223 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.353  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Andreev, V. K.  |e Verfasser  |4 aut 
245 1 0 |a Applications of Group-Theoretical Methods in Hydrodynamics  |c by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1998 
300 |a 1 Online-Ressource (XII, 396 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Mathematics and Its Applications  |v 450 
500 |a It was long ago that group analysis of differential equations became a powerful tool for studying nonlinear equations and boundary value problems. This analysis was especially fruitful in application to the basic equations of mechanics and physics because the invariance principles are already involved in their derivation. It is in no way a coincidence that the equations of hydrodynamics served as the first object for applying the new ideas and methods of group analysis which were developed by I. V. Ovsyannikov and his school. The authors rank themselves as disciples of the school. The present monograph deals mainly with group-theoretic classification of the equations of hydrodynamics in the presence of planar and rotational symmetry and also with construction of exact solutions and their physical interpretation. It is worth noting that the concept of exact solution to a differential equation is not defined rigorously; different authors understand it in different ways. The concept of exact solution expands along with the progress of mathematics (solutions in elementary functions, in quadratures, and in special functions; solutions in the form of convergent series with effectively computable terms; solutions whose searching reduces to integrating ordinary differential equations; etc. ). We consider it justifiable to enrich the set of exact solutions with rank one and rank two invariant and partially invariant solutions to the equations of hydrodynamics 
650 4 |a Mathematics 
650 4 |a Topological Groups 
650 4 |a Differential equations, partial 
650 4 |a Partial Differential Equations 
650 4 |a Topological Groups, Lie Groups 
650 4 |a Fluid- and Aerodynamics 
650 4 |a Theoretical, Mathematical and Computational Physics 
650 4 |a Classical Continuum Physics 
650 4 |a Mathematik 
650 0 7 |a Hydrodynamik  |0 (DE-588)4026302-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Gruppentheorie  |0 (DE-588)4072157-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Hydrodynamik  |0 (DE-588)4026302-2  |D s 
689 0 1 |a Gruppentheorie  |0 (DE-588)4072157-7  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Kaptsov, O. V.  |e Sonstige  |4 oth 
700 1 |a Pukhnachov, V. V.  |e Sonstige  |4 oth 
700 1 |a Rodionov, A. A.  |e Sonstige  |4 oth 
830 0 |a Mathematics and Its Applications  |v 450  |w (DE-604)BV008163334  |9 450 
856 4 0 |u https://doi.org/10.1007/978-94-017-0745-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027859640 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2071231
_version_ 1816714051150938112
any_adam_object
author Andreev, V. K.
author_facet Andreev, V. K.
author_role aut
author_sort Andreev, V. K.
author_variant v k a vk vka
building Verbundindex
bvnumber BV042424223
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184499312
(DE-599)BVBBV042424223
dewey-full 515.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.353
dewey-search 515.353
dewey-sort 3515.353
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-017-0745-9
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03648nmm a2200589zcb4500</leader><controlfield tag="001">BV042424223</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401707459</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-0745-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048150830</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5083-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0745-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184499312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424223</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andreev, V. K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of Group-Theoretical Methods in Hydrodynamics</subfield><subfield code="c">by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 396 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">450</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It was long ago that group analysis of differential equations became a powerful tool for studying nonlinear equations and boundary value problems. This analysis was especially fruitful in application to the basic equations of mechanics and physics because the invariance principles are already involved in their derivation. It is in no way a coincidence that the equations of hydrodynamics served as the first object for applying the new ideas and methods of group analysis which were developed by I. V. Ovsyannikov and his school. The authors rank themselves as disciples of the school. The present monograph deals mainly with group-theoretic classification of the equations of hydrodynamics in the presence of planar and rotational symmetry and also with construction of exact solutions and their physical interpretation. It is worth noting that the concept of exact solution to a differential equation is not defined rigorously; different authors understand it in different ways. The concept of exact solution expands along with the progress of mathematics (solutions in elementary functions, in quadratures, and in special functions; solutions in the form of convergent series with effectively computable terms; solutions whose searching reduces to integrating ordinary differential equations; etc. ). We consider it justifiable to enrich the set of exact solutions with rank one and rank two invariant and partially invariant solutions to the equations of hydrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical Continuum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaptsov, O. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pukhnachov, V. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodionov, A. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">450</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">450</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0745-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859640</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042424223
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9789401707459
9789048150830
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859640
oclc_num 1184499312
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XII, 396 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer Netherlands
record_format marc
series Mathematics and Its Applications
series2 Mathematics and Its Applications
spellingShingle Andreev, V. K.
Applications of Group-Theoretical Methods in Hydrodynamics
Mathematics and Its Applications
Mathematics
Topological Groups
Differential equations, partial
Partial Differential Equations
Topological Groups, Lie Groups
Fluid- and Aerodynamics
Theoretical, Mathematical and Computational Physics
Classical Continuum Physics
Mathematik
Hydrodynamik (DE-588)4026302-2 gnd
Gruppentheorie (DE-588)4072157-7 gnd
subject_GND (DE-588)4026302-2
(DE-588)4072157-7
title Applications of Group-Theoretical Methods in Hydrodynamics
title_auth Applications of Group-Theoretical Methods in Hydrodynamics
title_exact_search Applications of Group-Theoretical Methods in Hydrodynamics
title_full Applications of Group-Theoretical Methods in Hydrodynamics by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov
title_fullStr Applications of Group-Theoretical Methods in Hydrodynamics by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov
title_full_unstemmed Applications of Group-Theoretical Methods in Hydrodynamics by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov
title_short Applications of Group-Theoretical Methods in Hydrodynamics
title_sort applications of group theoretical methods in hydrodynamics
topic Mathematics
Topological Groups
Differential equations, partial
Partial Differential Equations
Topological Groups, Lie Groups
Fluid- and Aerodynamics
Theoretical, Mathematical and Computational Physics
Classical Continuum Physics
Mathematik
Hydrodynamik (DE-588)4026302-2 gnd
Gruppentheorie (DE-588)4072157-7 gnd
topic_facet Mathematics
Topological Groups
Differential equations, partial
Partial Differential Equations
Topological Groups, Lie Groups
Fluid- and Aerodynamics
Theoretical, Mathematical and Computational Physics
Classical Continuum Physics
Mathematik
Hydrodynamik
Gruppentheorie
url https://doi.org/10.1007/978-94-017-0745-9
volume_link (DE-604)BV008163334
work_keys_str_mv AT andreevvk applicationsofgrouptheoreticalmethodsinhydrodynamics
AT kaptsovov applicationsofgrouptheoreticalmethodsinhydrodynamics
AT pukhnachovvv applicationsofgrouptheoreticalmethodsinhydrodynamics
AT rodionovaa applicationsofgrouptheoreticalmethodsinhydrodynamics