Applications of Group-Theoretical Methods in Hydrodynamics
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1998
|
Schriftenreihe: | Mathematics and Its Applications
450 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042424223 | ||
003 | DE-604 | ||
005 | 20180108 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9789401707459 |c Online |9 978-94-017-0745-9 | ||
020 | |a 9789048150830 |c Print |9 978-90-481-5083-0 | ||
024 | 7 | |a 10.1007/978-94-017-0745-9 |2 doi | |
035 | |a (OCoLC)1184499312 | ||
035 | |a (DE-599)BVBBV042424223 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Andreev, V. K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Applications of Group-Theoretical Methods in Hydrodynamics |c by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1998 | |
300 | |a 1 Online-Ressource (XII, 396 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Mathematics and Its Applications |v 450 | |
500 | |a It was long ago that group analysis of differential equations became a powerful tool for studying nonlinear equations and boundary value problems. This analysis was especially fruitful in application to the basic equations of mechanics and physics because the invariance principles are already involved in their derivation. It is in no way a coincidence that the equations of hydrodynamics served as the first object for applying the new ideas and methods of group analysis which were developed by I. V. Ovsyannikov and his school. The authors rank themselves as disciples of the school. The present monograph deals mainly with group-theoretic classification of the equations of hydrodynamics in the presence of planar and rotational symmetry and also with construction of exact solutions and their physical interpretation. It is worth noting that the concept of exact solution to a differential equation is not defined rigorously; different authors understand it in different ways. The concept of exact solution expands along with the progress of mathematics (solutions in elementary functions, in quadratures, and in special functions; solutions in the form of convergent series with effectively computable terms; solutions whose searching reduces to integrating ordinary differential equations; etc. ). We consider it justifiable to enrich the set of exact solutions with rank one and rank two invariant and partially invariant solutions to the equations of hydrodynamics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Fluid- and Aerodynamics | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Classical Continuum Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hydrodynamik |0 (DE-588)4026302-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hydrodynamik |0 (DE-588)4026302-2 |D s |
689 | 0 | 1 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kaptsov, O. V. |e Sonstige |4 oth | |
700 | 1 | |a Pukhnachov, V. V. |e Sonstige |4 oth | |
700 | 1 | |a Rodionov, A. A. |e Sonstige |4 oth | |
830 | 0 | |a Mathematics and Its Applications |v 450 |w (DE-604)BV008163334 |9 450 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-017-0745-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027859640 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2071231 |
---|---|
_version_ | 1816714051150938112 |
any_adam_object | |
author | Andreev, V. K. |
author_facet | Andreev, V. K. |
author_role | aut |
author_sort | Andreev, V. K. |
author_variant | v k a vk vka |
building | Verbundindex |
bvnumber | BV042424223 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184499312 (DE-599)BVBBV042424223 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-017-0745-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03648nmm a2200589zcb4500</leader><controlfield tag="001">BV042424223</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180108 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401707459</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-0745-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048150830</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5083-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0745-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184499312</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424223</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Andreev, V. K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Applications of Group-Theoretical Methods in Hydrodynamics</subfield><subfield code="c">by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 396 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">450</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It was long ago that group analysis of differential equations became a powerful tool for studying nonlinear equations and boundary value problems. This analysis was especially fruitful in application to the basic equations of mechanics and physics because the invariance principles are already involved in their derivation. It is in no way a coincidence that the equations of hydrodynamics served as the first object for applying the new ideas and methods of group analysis which were developed by I. V. Ovsyannikov and his school. The authors rank themselves as disciples of the school. The present monograph deals mainly with group-theoretic classification of the equations of hydrodynamics in the presence of planar and rotational symmetry and also with construction of exact solutions and their physical interpretation. It is worth noting that the concept of exact solution to a differential equation is not defined rigorously; different authors understand it in different ways. The concept of exact solution expands along with the progress of mathematics (solutions in elementary functions, in quadratures, and in special functions; solutions in the form of convergent series with effectively computable terms; solutions whose searching reduces to integrating ordinary differential equations; etc. ). We consider it justifiable to enrich the set of exact solutions with rank one and rank two invariant and partially invariant solutions to the equations of hydrodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fluid- and Aerodynamics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classical Continuum Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hydrodynamik</subfield><subfield code="0">(DE-588)4026302-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kaptsov, O. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pukhnachov, V. V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Rodionov, A. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">450</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">450</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0745-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859640</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042424223 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T17:51:13Z |
institution | BVB |
isbn | 9789401707459 9789048150830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859640 |
oclc_num | 1184499312 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 396 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Springer Netherlands |
record_format | marc |
series | Mathematics and Its Applications |
series2 | Mathematics and Its Applications |
spellingShingle | Andreev, V. K. Applications of Group-Theoretical Methods in Hydrodynamics Mathematics and Its Applications Mathematics Topological Groups Differential equations, partial Partial Differential Equations Topological Groups, Lie Groups Fluid- and Aerodynamics Theoretical, Mathematical and Computational Physics Classical Continuum Physics Mathematik Hydrodynamik (DE-588)4026302-2 gnd Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4026302-2 (DE-588)4072157-7 |
title | Applications of Group-Theoretical Methods in Hydrodynamics |
title_auth | Applications of Group-Theoretical Methods in Hydrodynamics |
title_exact_search | Applications of Group-Theoretical Methods in Hydrodynamics |
title_full | Applications of Group-Theoretical Methods in Hydrodynamics by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov |
title_fullStr | Applications of Group-Theoretical Methods in Hydrodynamics by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov |
title_full_unstemmed | Applications of Group-Theoretical Methods in Hydrodynamics by V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachov, A. A. Rodionov |
title_short | Applications of Group-Theoretical Methods in Hydrodynamics |
title_sort | applications of group theoretical methods in hydrodynamics |
topic | Mathematics Topological Groups Differential equations, partial Partial Differential Equations Topological Groups, Lie Groups Fluid- and Aerodynamics Theoretical, Mathematical and Computational Physics Classical Continuum Physics Mathematik Hydrodynamik (DE-588)4026302-2 gnd Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Mathematics Topological Groups Differential equations, partial Partial Differential Equations Topological Groups, Lie Groups Fluid- and Aerodynamics Theoretical, Mathematical and Computational Physics Classical Continuum Physics Mathematik Hydrodynamik Gruppentheorie |
url | https://doi.org/10.1007/978-94-017-0745-9 |
volume_link | (DE-604)BV008163334 |
work_keys_str_mv | AT andreevvk applicationsofgrouptheoreticalmethodsinhydrodynamics AT kaptsovov applicationsofgrouptheoreticalmethodsinhydrodynamics AT pukhnachovvv applicationsofgrouptheoreticalmethodsinhydrodynamics AT rodionovaa applicationsofgrouptheoreticalmethodsinhydrodynamics |