Endomorphism Rings of Abelian Groups

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Krylov, Petr Andreevič (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 2003
Schriftenreihe:Algebras and Applications 2
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424201
003 DE-604
005 20171009
007 cr|uuu---uuuuu
008 150317s2003 xx o|||| 00||| eng d
020 |a 9789401703451  |c Online  |9 978-94-017-0345-1 
020 |a 9789048163496  |c Print  |9 978-90-481-6349-6 
024 7 |a 10.1007/978-94-017-0345-1  |2 doi 
035 |a (OCoLC)860051008 
035 |a (DE-599)BVBBV042424201 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.46  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Krylov, Petr Andreevič  |e Verfasser  |0 (DE-588)106838090X  |4 aut 
245 1 0 |a Endomorphism Rings of Abelian Groups  |c by Piotr A. Krylov, Alexander V. Mikhalev, Askar A. Tuganbaev 
264 1 |a Dordrecht  |b Springer Netherlands  |c 2003 
300 |a 1 Online-Ressource (XII, 443 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Algebras and Applications  |v 2  |x 1572-5553 
500 |a Every Abelian group can be related to an associative ring with an identity element, the ring of all its endomorphisms. Recently the theory of endomorphism rings of Abelian groups has become a rapidly developing area of algebra. On the one hand, it can be considered as a part of the theory of Abelian groups; on the other hand, the theory can be considered as a branch of the theory of endomorphism rings of modules and the representation theory of rings. There are several reasons for studying endomorphism rings of Abelian groups: first, it makes it possible to acquire additional information about Abelian groups themselves, to introduce new concepts and methods, and to find new interesting classes of groups; second, it stimulates further development of the theory of modules and their endomorphism rings. The theory of endomorphism rings can also be useful for studies of the structure of additive groups of rings, E-modules, and homological properties of Abelian groups. The books of Baer [52] and Kaplansky [245] have played an important role in the early development of the theory of endomorphism rings of Abelian groups and modules. Endomorphism rings of Abelian groups are much studied in monographs of Fuchs [170], [172], and [173]. Endomorphism rings are also studied in the works of Kurosh [287], Arnold [31], and Benabdallah [63] 
650 4 |a Mathematics 
650 4 |a Algebra 
650 4 |a Group theory 
650 4 |a Associative Rings and Algebras 
650 4 |a Group Theory and Generalizations 
650 4 |a Commutative Rings and Algebras 
650 4 |a Mathematik 
700 1 |a Mikhalev, Aleksandr Vasilʹevič  |d 1940-  |e Sonstige  |0 (DE-588)1089283873  |4 oth 
700 1 |a Tuganbaev, Askar A.  |e Sonstige  |0 (DE-588)103454148X  |4 oth 
830 0 |a Algebras and Applications  |v 2  |w (DE-604)BV035420975  |9 2 
856 4 0 |u https://doi.org/10.1007/978-94-017-0345-1  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859618 

Datensatz im Suchindex

_version_ 1819294259725991936
any_adam_object
author Krylov, Petr Andreevič
author_GND (DE-588)106838090X
(DE-588)1089283873
(DE-588)103454148X
author_facet Krylov, Petr Andreevič
author_role aut
author_sort Krylov, Petr Andreevič
author_variant p a k pa pak
building Verbundindex
bvnumber BV042424201
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)860051008
(DE-599)BVBBV042424201
dewey-full 512.46
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.46
dewey-search 512.46
dewey-sort 3512.46
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-017-0345-1
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03066nam a2200493zcb4500</leader><controlfield tag="001">BV042424201</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171009 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401703451</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-017-0345-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048163496</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-6349-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-017-0345-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860051008</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424201</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.46</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krylov, Petr Andreevič</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106838090X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Endomorphism Rings of Abelian Groups</subfield><subfield code="c">by Piotr A. Krylov, Alexander V. Mikhalev, Askar A. Tuganbaev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 443 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Algebras and Applications</subfield><subfield code="v">2</subfield><subfield code="x">1572-5553</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Every Abelian group can be related to an associative ring with an identity element, the ring of all its endomorphisms. Recently the theory of endomorphism rings of Abelian groups has become a rapidly developing area of algebra. On the one hand, it can be considered as a part of the theory of Abelian groups; on the other hand, the theory can be considered as a branch of the theory of endomorphism rings of modules and the representation theory of rings. There are several reasons for studying endomorphism rings of Abelian groups: first, it makes it possible to acquire additional information about Abelian groups themselves, to introduce new concepts and methods, and to find new interesting classes of groups; second, it stimulates further development of the theory of modules and their endomorphism rings. The theory of endomorphism rings can also be useful for studies of the structure of additive groups of rings, E-modules, and homological properties of Abelian groups. The books of Baer [52] and Kaplansky [245] have played an important role in the early development of the theory of endomorphism rings of Abelian groups and modules. Endomorphism rings of Abelian groups are much studied in monographs of Fuchs [170], [172], and [173]. Endomorphism rings are also studied in the works of Kurosh [287], Arnold [31], and Benabdallah [63]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mikhalev, Aleksandr Vasilʹevič</subfield><subfield code="d">1940-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1089283873</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tuganbaev, Askar A.</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)103454148X</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Algebras and Applications</subfield><subfield code="v">2</subfield><subfield code="w">(DE-604)BV035420975</subfield><subfield code="9">2</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-017-0345-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859618</subfield></datafield></record></collection>
id DE-604.BV042424201
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401703451
9789048163496
issn 1572-5553
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859618
oclc_num 860051008
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XII, 443 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher Springer Netherlands
record_format marc
series Algebras and Applications
series2 Algebras and Applications
spelling Krylov, Petr Andreevič Verfasser (DE-588)106838090X aut
Endomorphism Rings of Abelian Groups by Piotr A. Krylov, Alexander V. Mikhalev, Askar A. Tuganbaev
Dordrecht Springer Netherlands 2003
1 Online-Ressource (XII, 443 p)
txt rdacontent
c rdamedia
cr rdacarrier
Algebras and Applications 2 1572-5553
Every Abelian group can be related to an associative ring with an identity element, the ring of all its endomorphisms. Recently the theory of endomorphism rings of Abelian groups has become a rapidly developing area of algebra. On the one hand, it can be considered as a part of the theory of Abelian groups; on the other hand, the theory can be considered as a branch of the theory of endomorphism rings of modules and the representation theory of rings. There are several reasons for studying endomorphism rings of Abelian groups: first, it makes it possible to acquire additional information about Abelian groups themselves, to introduce new concepts and methods, and to find new interesting classes of groups; second, it stimulates further development of the theory of modules and their endomorphism rings. The theory of endomorphism rings can also be useful for studies of the structure of additive groups of rings, E-modules, and homological properties of Abelian groups. The books of Baer [52] and Kaplansky [245] have played an important role in the early development of the theory of endomorphism rings of Abelian groups and modules. Endomorphism rings of Abelian groups are much studied in monographs of Fuchs [170], [172], and [173]. Endomorphism rings are also studied in the works of Kurosh [287], Arnold [31], and Benabdallah [63]
Mathematics
Algebra
Group theory
Associative Rings and Algebras
Group Theory and Generalizations
Commutative Rings and Algebras
Mathematik
Mikhalev, Aleksandr Vasilʹevič 1940- Sonstige (DE-588)1089283873 oth
Tuganbaev, Askar A. Sonstige (DE-588)103454148X oth
Algebras and Applications 2 (DE-604)BV035420975 2
https://doi.org/10.1007/978-94-017-0345-1 Verlag Volltext
spellingShingle Krylov, Petr Andreevič
Endomorphism Rings of Abelian Groups
Algebras and Applications
Mathematics
Algebra
Group theory
Associative Rings and Algebras
Group Theory and Generalizations
Commutative Rings and Algebras
Mathematik
title Endomorphism Rings of Abelian Groups
title_auth Endomorphism Rings of Abelian Groups
title_exact_search Endomorphism Rings of Abelian Groups
title_full Endomorphism Rings of Abelian Groups by Piotr A. Krylov, Alexander V. Mikhalev, Askar A. Tuganbaev
title_fullStr Endomorphism Rings of Abelian Groups by Piotr A. Krylov, Alexander V. Mikhalev, Askar A. Tuganbaev
title_full_unstemmed Endomorphism Rings of Abelian Groups by Piotr A. Krylov, Alexander V. Mikhalev, Askar A. Tuganbaev
title_short Endomorphism Rings of Abelian Groups
title_sort endomorphism rings of abelian groups
topic Mathematics
Algebra
Group theory
Associative Rings and Algebras
Group Theory and Generalizations
Commutative Rings and Algebras
Mathematik
topic_facet Mathematics
Algebra
Group theory
Associative Rings and Algebras
Group Theory and Generalizations
Commutative Rings and Algebras
Mathematik
url https://doi.org/10.1007/978-94-017-0345-1
volume_link (DE-604)BV035420975
work_keys_str_mv AT krylovpetrandreevic endomorphismringsofabeliangroups
AT mikhalevaleksandrvasilʹevic endomorphismringsofabeliangroups
AT tuganbaevaskara endomorphismringsofabeliangroups