A Study of Braids

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Murasugi, Kunio (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1999
Schriftenreihe:Mathematics and Its Applications 484
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424130
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1999 xx o|||| 00||| eng d
020 |a 9789401593199  |c Online  |9 978-94-015-9319-9 
020 |a 9789048152452  |c Print  |9 978-90-481-5245-2 
024 7 |a 10.1007/978-94-015-9319-9  |2 doi 
035 |a (OCoLC)879622986 
035 |a (DE-599)BVBBV042424130 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 514.2  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Murasugi, Kunio  |e Verfasser  |4 aut 
245 1 0 |a A Study of Braids  |c by Kunio Murasugi, Bohdan I. Kurpita 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1999 
300 |a 1 Online-Ressource (X, 277 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 484 
500 |a In Chapter 6, we describe the concept of braid equivalence from the topological point of view. This will lead us to a new concept braid homotopy that is discussed fully in the next chapter. As just mentioned, in Chapter 7, we shall discuss the difference between braid equivalence and braid homotopy. Also in this chapter, we define a homotopy braid invariant that turns out to be the so-called Milnor number. Chapter 8 is a quick review of knot theory, including Alexander's theorem. While, Chapters 9 is devoted to Markov's theorem, which allows the application of this theory to other fields. This was one of the motivations Artin had in mind when he began studying braid theory. In Chapter 10, we discuss the primary applications of braid theory to knot theory, including the introduction of the most important invariants of knot theory, the Alexander polynomial and the Jones polynomial. In Chapter 11, motivated by Dirac's string problem, the ordinary braid group is generalized to the braid groups of various surfaces. We discuss these groups from an intuitive and diagrammatic point of view. In the last short chapter 12, we present without proof one theorem, due to Gorin and Lin [GoL] , that is a surprising application of braid theory to the theory of algebraic equations 
650 4 |a Mathematics 
650 4 |a Computational complexity 
650 4 |a Group theory 
650 4 |a Geometry 
650 4 |a Algebraic topology 
650 4 |a Cell aggregation / Mathematics 
650 4 |a Algebraic Topology 
650 4 |a Group Theory and Generalizations 
650 4 |a Manifolds and Cell Complexes (incl. Diff.Topology) 
650 4 |a Discrete Mathematics in Computer Science 
650 4 |a Mathematik 
700 1 |a Kurpita, Bohdan I.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-94-015-9319-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859547 

Datensatz im Suchindex

_version_ 1819294259558219776
any_adam_object
author Murasugi, Kunio
author_facet Murasugi, Kunio
author_role aut
author_sort Murasugi, Kunio
author_variant k m km
building Verbundindex
bvnumber BV042424130
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879622986
(DE-599)BVBBV042424130
dewey-full 514.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 514 - Topology
dewey-raw 514.2
dewey-search 514.2
dewey-sort 3514.2
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-015-9319-9
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02939nam a2200517zcb4500</leader><controlfield tag="001">BV042424130</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401593199</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-9319-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048152452</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-5245-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-9319-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879622986</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424130</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Murasugi, Kunio</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Study of Braids</subfield><subfield code="c">by Kunio Murasugi, Bohdan I. Kurpita</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 277 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">484</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In Chapter 6, we describe the concept of braid equivalence from the topological point of view. This will lead us to a new concept braid homotopy that is discussed fully in the next chapter. As just mentioned, in Chapter 7, we shall discuss the difference between braid equivalence and braid homotopy. Also in this chapter, we define a homotopy braid invariant that turns out to be the so-called Milnor number. Chapter 8 is a quick review of knot theory, including Alexander's theorem. While, Chapters 9 is devoted to Markov's theorem, which allows the application of this theory to other fields. This was one of the motivations Artin had in mind when he began studying braid theory. In Chapter 10, we discuss the primary applications of braid theory to knot theory, including the introduction of the most important invariants of knot theory, the Alexander polynomial and the Jones polynomial. In Chapter 11, motivated by Dirac's string problem, the ordinary braid group is generalized to the braid groups of various surfaces. We discuss these groups from an intuitive and diagrammatic point of view. In the last short chapter 12, we present without proof one theorem, due to Gorin and Lin [GoL] , that is a surprising application of braid theory to the theory of algebraic equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kurpita, Bohdan I.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-9319-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859547</subfield></datafield></record></collection>
id DE-604.BV042424130
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401593199
9789048152452
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859547
oclc_num 879622986
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 277 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Murasugi, Kunio Verfasser aut
A Study of Braids by Kunio Murasugi, Bohdan I. Kurpita
Dordrecht Springer Netherlands 1999
1 Online-Ressource (X, 277 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 484
In Chapter 6, we describe the concept of braid equivalence from the topological point of view. This will lead us to a new concept braid homotopy that is discussed fully in the next chapter. As just mentioned, in Chapter 7, we shall discuss the difference between braid equivalence and braid homotopy. Also in this chapter, we define a homotopy braid invariant that turns out to be the so-called Milnor number. Chapter 8 is a quick review of knot theory, including Alexander's theorem. While, Chapters 9 is devoted to Markov's theorem, which allows the application of this theory to other fields. This was one of the motivations Artin had in mind when he began studying braid theory. In Chapter 10, we discuss the primary applications of braid theory to knot theory, including the introduction of the most important invariants of knot theory, the Alexander polynomial and the Jones polynomial. In Chapter 11, motivated by Dirac's string problem, the ordinary braid group is generalized to the braid groups of various surfaces. We discuss these groups from an intuitive and diagrammatic point of view. In the last short chapter 12, we present without proof one theorem, due to Gorin and Lin [GoL] , that is a surprising application of braid theory to the theory of algebraic equations
Mathematics
Computational complexity
Group theory
Geometry
Algebraic topology
Cell aggregation / Mathematics
Algebraic Topology
Group Theory and Generalizations
Manifolds and Cell Complexes (incl. Diff.Topology)
Discrete Mathematics in Computer Science
Mathematik
Kurpita, Bohdan I. Sonstige oth
https://doi.org/10.1007/978-94-015-9319-9 Verlag Volltext
spellingShingle Murasugi, Kunio
A Study of Braids
Mathematics
Computational complexity
Group theory
Geometry
Algebraic topology
Cell aggregation / Mathematics
Algebraic Topology
Group Theory and Generalizations
Manifolds and Cell Complexes (incl. Diff.Topology)
Discrete Mathematics in Computer Science
Mathematik
title A Study of Braids
title_auth A Study of Braids
title_exact_search A Study of Braids
title_full A Study of Braids by Kunio Murasugi, Bohdan I. Kurpita
title_fullStr A Study of Braids by Kunio Murasugi, Bohdan I. Kurpita
title_full_unstemmed A Study of Braids by Kunio Murasugi, Bohdan I. Kurpita
title_short A Study of Braids
title_sort a study of braids
topic Mathematics
Computational complexity
Group theory
Geometry
Algebraic topology
Cell aggregation / Mathematics
Algebraic Topology
Group Theory and Generalizations
Manifolds and Cell Complexes (incl. Diff.Topology)
Discrete Mathematics in Computer Science
Mathematik
topic_facet Mathematics
Computational complexity
Group theory
Geometry
Algebraic topology
Cell aggregation / Mathematics
Algebraic Topology
Group Theory and Generalizations
Manifolds and Cell Complexes (incl. Diff.Topology)
Discrete Mathematics in Computer Science
Mathematik
url https://doi.org/10.1007/978-94-015-9319-9
work_keys_str_mv AT murasugikunio astudyofbraids
AT kurpitabohdani astudyofbraids