Conformal Quantum Field Theory in D-dimensions

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fradkin, Efim S. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1996
Schriftenreihe:Mathematics and Its Applications 376
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424085
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1996 xx o|||| 00||| eng d
020 |a 9789401587570  |c Online  |9 978-94-015-8757-0 
020 |a 9789048147328  |c Print  |9 978-90-481-4732-8 
024 7 |a 10.1007/978-94-015-8757-0  |2 doi 
035 |a (OCoLC)1165485960 
035 |a (DE-599)BVBBV042424085 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 539.72  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Fradkin, Efim S.  |e Verfasser  |4 aut 
245 1 0 |a Conformal Quantum Field Theory in D-dimensions  |c by Efim S. Fradkin, Mark Ya. Palchik 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1996 
300 |a 1 Online-Ressource (XII, 466 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 376 
500 |a Our prime concern in this book is to discuss some most interesting prosppcts that have occurred recently in conformally invariant quantum field theory in a D-diuwnsional space. One of the most promising trends is constructing an pxact solution for a cprtain class of models. This task seems to be quite feasible in the light of recent resllits. The situation here is to some extent similar to what was going on in the past ypars with the two-dimensional quantum field theory. Our investigation of conformal Ward identities in a D-dimensional space, carried out as far hack as the late H. J7Gs, showed that in the D-dimensional quantum field theory, irrespective of the type of interartion, there exists a special set of states of the field with the following property: if we rpqllire that one of these states should vanish, this determines an exact solution of 3. certain field model. These states are analogous to null-vectors which determine the minimal models in the two-dimensional field theory. On the other hand, the recent resparches supplied us with a number of indications on the existencp of an intinite-parampter algebra analogous to the Virasoro algebra in spaces of higher dimensions D 2: :~. It has also been shown that this algebra admits an operator rentral expansion. It seems to us that the above-mentioned models are field theoretical realizations of the representations of these new symmetries for D 2: ;3 
650 4 |a Physics 
650 4 |a Topological Groups 
650 4 |a Mathematics 
650 4 |a Quantum theory 
650 4 |a Elementary Particles, Quantum Field Theory 
650 4 |a Topological Groups, Lie Groups 
650 4 |a Applications of Mathematics 
650 4 |a Mathematik 
650 4 |a Quantentheorie 
650 0 7 |a Konforme Feldtheorie  |0 (DE-588)4312574-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Quantenfeldtheorie  |0 (DE-588)4047984-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Quantenfeldtheorie  |0 (DE-588)4047984-5  |D s 
689 0 1 |a Konforme Feldtheorie  |0 (DE-588)4312574-8  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Palchik, Mark Ya  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-94-015-8757-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859502 

Datensatz im Suchindex

_version_ 1819294259453362176
any_adam_object
author Fradkin, Efim S.
author_facet Fradkin, Efim S.
author_role aut
author_sort Fradkin, Efim S.
author_variant e s f es esf
building Verbundindex
bvnumber BV042424085
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1165485960
(DE-599)BVBBV042424085
dewey-full 539.72
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 539 - Modern physics
dewey-raw 539.72
dewey-search 539.72
dewey-sort 3539.72
dewey-tens 530 - Physics
discipline Physik
Mathematik
doi_str_mv 10.1007/978-94-015-8757-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03366nam a2200565zcb4500</leader><controlfield tag="001">BV042424085</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401587570</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8757-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048147328</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4732-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8757-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165485960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424085</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">539.72</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fradkin, Efim S.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Conformal Quantum Field Theory in D-dimensions</subfield><subfield code="c">by Efim S. Fradkin, Mark Ya. Palchik</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 466 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">376</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Our prime concern in this book is to discuss some most interesting prosppcts that have occurred recently in conformally invariant quantum field theory in a D-diuwnsional space. One of the most promising trends is constructing an pxact solution for a cprtain class of models. This task seems to be quite feasible in the light of recent resllits. The situation here is to some extent similar to what was going on in the past ypars with the two-dimensional quantum field theory. Our investigation of conformal Ward identities in a D-dimensional space, carried out as far hack as the late H. J7Gs, showed that in the D-dimensional quantum field theory, irrespective of the type of interartion, there exists a special set of states of the field with the following property: if we rpqllire that one of these states should vanish, this determines an exact solution of 3. certain field model. These states are analogous to null-vectors which determine the minimal models in the two-dimensional field theory. On the other hand, the recent resparches supplied us with a number of indications on the existencp of an intinite-parampter algebra analogous to the Virasoro algebra in spaces of higher dimensions D 2: :~. It has also been shown that this algebra admits an operator rentral expansion. It seems to us that the above-mentioned models are field theoretical realizations of the representations of these new symmetries for D 2: ;3</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Konforme Feldtheorie</subfield><subfield code="0">(DE-588)4312574-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Konforme Feldtheorie</subfield><subfield code="0">(DE-588)4312574-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Palchik, Mark Ya</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8757-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859502</subfield></datafield></record></collection>
id DE-604.BV042424085
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401587570
9789048147328
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859502
oclc_num 1165485960
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XII, 466 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Fradkin, Efim S. Verfasser aut
Conformal Quantum Field Theory in D-dimensions by Efim S. Fradkin, Mark Ya. Palchik
Dordrecht Springer Netherlands 1996
1 Online-Ressource (XII, 466 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 376
Our prime concern in this book is to discuss some most interesting prosppcts that have occurred recently in conformally invariant quantum field theory in a D-diuwnsional space. One of the most promising trends is constructing an pxact solution for a cprtain class of models. This task seems to be quite feasible in the light of recent resllits. The situation here is to some extent similar to what was going on in the past ypars with the two-dimensional quantum field theory. Our investigation of conformal Ward identities in a D-dimensional space, carried out as far hack as the late H. J7Gs, showed that in the D-dimensional quantum field theory, irrespective of the type of interartion, there exists a special set of states of the field with the following property: if we rpqllire that one of these states should vanish, this determines an exact solution of 3. certain field model. These states are analogous to null-vectors which determine the minimal models in the two-dimensional field theory. On the other hand, the recent resparches supplied us with a number of indications on the existencp of an intinite-parampter algebra analogous to the Virasoro algebra in spaces of higher dimensions D 2: :~. It has also been shown that this algebra admits an operator rentral expansion. It seems to us that the above-mentioned models are field theoretical realizations of the representations of these new symmetries for D 2: ;3
Physics
Topological Groups
Mathematics
Quantum theory
Elementary Particles, Quantum Field Theory
Topological Groups, Lie Groups
Applications of Mathematics
Mathematik
Quantentheorie
Konforme Feldtheorie (DE-588)4312574-8 gnd rswk-swf
Quantenfeldtheorie (DE-588)4047984-5 gnd rswk-swf
Quantenfeldtheorie (DE-588)4047984-5 s
Konforme Feldtheorie (DE-588)4312574-8 s
1\p DE-604
Palchik, Mark Ya Sonstige oth
https://doi.org/10.1007/978-94-015-8757-0 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Fradkin, Efim S.
Conformal Quantum Field Theory in D-dimensions
Physics
Topological Groups
Mathematics
Quantum theory
Elementary Particles, Quantum Field Theory
Topological Groups, Lie Groups
Applications of Mathematics
Mathematik
Quantentheorie
Konforme Feldtheorie (DE-588)4312574-8 gnd
Quantenfeldtheorie (DE-588)4047984-5 gnd
subject_GND (DE-588)4312574-8
(DE-588)4047984-5
title Conformal Quantum Field Theory in D-dimensions
title_auth Conformal Quantum Field Theory in D-dimensions
title_exact_search Conformal Quantum Field Theory in D-dimensions
title_full Conformal Quantum Field Theory in D-dimensions by Efim S. Fradkin, Mark Ya. Palchik
title_fullStr Conformal Quantum Field Theory in D-dimensions by Efim S. Fradkin, Mark Ya. Palchik
title_full_unstemmed Conformal Quantum Field Theory in D-dimensions by Efim S. Fradkin, Mark Ya. Palchik
title_short Conformal Quantum Field Theory in D-dimensions
title_sort conformal quantum field theory in d dimensions
topic Physics
Topological Groups
Mathematics
Quantum theory
Elementary Particles, Quantum Field Theory
Topological Groups, Lie Groups
Applications of Mathematics
Mathematik
Quantentheorie
Konforme Feldtheorie (DE-588)4312574-8 gnd
Quantenfeldtheorie (DE-588)4047984-5 gnd
topic_facet Physics
Topological Groups
Mathematics
Quantum theory
Elementary Particles, Quantum Field Theory
Topological Groups, Lie Groups
Applications of Mathematics
Mathematik
Quantentheorie
Konforme Feldtheorie
Quantenfeldtheorie
url https://doi.org/10.1007/978-94-015-8757-0
work_keys_str_mv AT fradkinefims conformalquantumfieldtheoryinddimensions
AT palchikmarkya conformalquantumfieldtheoryinddimensions