Semigroups and Their Subsemigroup Lattices

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Shevrin, Lev N. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1996
Schriftenreihe:Mathematics and Its Applications 379
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042424083
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1996 xx o|||| 00||| eng d
020 |a 9789401587518  |c Online  |9 978-94-015-8751-8 
020 |a 9789048147496  |c Print  |9 978-90-481-4749-6 
024 7 |a 10.1007/978-94-015-8751-8  |2 doi 
035 |a (OCoLC)1184494379 
035 |a (DE-599)BVBBV042424083 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.2  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Shevrin, Lev N.  |e Verfasser  |4 aut 
245 1 0 |a Semigroups and Their Subsemigroup Lattices  |c by Lev N. Shevrin, Alexander J. Ovsyannikov 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1996 
300 |a 1 Online-Ressource (XI, 380 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 379 
500 |a 0.1. General remarks. For any algebraic system A, the set SubA of all subsystems of A partially ordered by inclusion forms a lattice. This is the subsystem lattice of A. (In certain cases, such as that of semigroups, in order to have the right always to say that SubA is a lattice, we have to treat the empty set as a subsystem.) The study of various inter-relationships between systems and their subsystem lattices is a rather large field of investigation developed over many years. This trend was formed first in group theory; basic relevant information up to the early seventies is contained in the book [Suz] and the surveys [K Pek St], [Sad 2], [Ar Sad], there is also a quite recent book [Schm 2]. As another inspiring source, one should point out a branch of mathematics to which the book [Baer] was devoted. One of the key objects of examination in this branch is the subspace lattice of a vector space over a skew field. A more general approach deals with modules and their submodule lattices. Examining subsystem lattices for the case of modules as well as for rings and algebras (both associative and non-associative, in particular, Lie algebras) began more than thirty years ago; there are results on this subject also for lattices, Boolean algebras and some other types of algebraic systems, both concrete and general. A lot of works including several surveys have been published here 
650 4 |a Mathematics 
650 4 |a Group theory 
650 4 |a Algebra 
650 4 |a Logic, Symbolic and mathematical 
650 4 |a Group Theory and Generalizations 
650 4 |a Order, Lattices, Ordered Algebraic Structures 
650 4 |a Mathematical Logic and Foundations 
650 4 |a Mathematik 
650 0 7 |a Unterhalbgruppe  |0 (DE-588)4186987-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Halbgruppe  |0 (DE-588)4022990-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Verband  |g Mathematik  |0 (DE-588)4062565-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Halbgruppe  |0 (DE-588)4022990-7  |D s 
689 0 1 |a Unterhalbgruppe  |0 (DE-588)4186987-4  |D s 
689 0 2 |a Verband  |g Mathematik  |0 (DE-588)4062565-5  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Ovsyannikov, Alexander J.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-94-015-8751-8  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859500 

Datensatz im Suchindex

_version_ 1819294259443924994
any_adam_object
author Shevrin, Lev N.
author_facet Shevrin, Lev N.
author_role aut
author_sort Shevrin, Lev N.
author_variant l n s ln lns
building Verbundindex
bvnumber BV042424083
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184494379
(DE-599)BVBBV042424083
dewey-full 512.2
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.2
dewey-search 512.2
dewey-sort 3512.2
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-015-8751-8
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03442nam a2200577zcb4500</leader><controlfield tag="001">BV042424083</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401587518</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-015-8751-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789048147496</subfield><subfield code="c">Print</subfield><subfield code="9">978-90-481-4749-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-015-8751-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184494379</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042424083</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shevrin, Lev N.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semigroups and Their Subsemigroup Lattices</subfield><subfield code="c">by Lev N. Shevrin, Alexander J. Ovsyannikov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 380 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">379</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">0.1. General remarks. For any algebraic system A, the set SubA of all subsystems of A partially ordered by inclusion forms a lattice. This is the subsystem lattice of A. (In certain cases, such as that of semigroups, in order to have the right always to say that SubA is a lattice, we have to treat the empty set as a subsystem.) The study of various inter-relationships between systems and their subsystem lattices is a rather large field of investigation developed over many years. This trend was formed first in group theory; basic relevant information up to the early seventies is contained in the book [Suz] and the surveys [K Pek St], [Sad 2], [Ar Sad], there is also a quite recent book [Schm 2]. As another inspiring source, one should point out a branch of mathematics to which the book [Baer] was devoted. One of the key objects of examination in this branch is the subspace lattice of a vector space over a skew field. A more general approach deals with modules and their submodule lattices. Examining subsystem lattices for the case of modules as well as for rings and algebras (both associative and non-associative, in particular, Lie algebras) began more than thirty years ago; there are results on this subject also for lattices, Boolean algebras and some other types of algebraic systems, both concrete and general. A lot of works including several surveys have been published here</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Order, Lattices, Ordered Algebraic Structures</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unterhalbgruppe</subfield><subfield code="0">(DE-588)4186987-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbgruppe</subfield><subfield code="0">(DE-588)4022990-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verband</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4062565-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbgruppe</subfield><subfield code="0">(DE-588)4022990-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Unterhalbgruppe</subfield><subfield code="0">(DE-588)4186987-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Verband</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4062565-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ovsyannikov, Alexander J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-015-8751-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859500</subfield></datafield></record></collection>
id DE-604.BV042424083
illustrated Not Illustrated
indexdate 2024-12-24T04:23:29Z
institution BVB
isbn 9789401587518
9789048147496
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859500
oclc_num 1184494379
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XI, 380 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1996
publishDateSearch 1996
publishDateSort 1996
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Shevrin, Lev N. Verfasser aut
Semigroups and Their Subsemigroup Lattices by Lev N. Shevrin, Alexander J. Ovsyannikov
Dordrecht Springer Netherlands 1996
1 Online-Ressource (XI, 380 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 379
0.1. General remarks. For any algebraic system A, the set SubA of all subsystems of A partially ordered by inclusion forms a lattice. This is the subsystem lattice of A. (In certain cases, such as that of semigroups, in order to have the right always to say that SubA is a lattice, we have to treat the empty set as a subsystem.) The study of various inter-relationships between systems and their subsystem lattices is a rather large field of investigation developed over many years. This trend was formed first in group theory; basic relevant information up to the early seventies is contained in the book [Suz] and the surveys [K Pek St], [Sad 2], [Ar Sad], there is also a quite recent book [Schm 2]. As another inspiring source, one should point out a branch of mathematics to which the book [Baer] was devoted. One of the key objects of examination in this branch is the subspace lattice of a vector space over a skew field. A more general approach deals with modules and their submodule lattices. Examining subsystem lattices for the case of modules as well as for rings and algebras (both associative and non-associative, in particular, Lie algebras) began more than thirty years ago; there are results on this subject also for lattices, Boolean algebras and some other types of algebraic systems, both concrete and general. A lot of works including several surveys have been published here
Mathematics
Group theory
Algebra
Logic, Symbolic and mathematical
Group Theory and Generalizations
Order, Lattices, Ordered Algebraic Structures
Mathematical Logic and Foundations
Mathematik
Unterhalbgruppe (DE-588)4186987-4 gnd rswk-swf
Halbgruppe (DE-588)4022990-7 gnd rswk-swf
Verband Mathematik (DE-588)4062565-5 gnd rswk-swf
Halbgruppe (DE-588)4022990-7 s
Unterhalbgruppe (DE-588)4186987-4 s
Verband Mathematik (DE-588)4062565-5 s
1\p DE-604
Ovsyannikov, Alexander J. Sonstige oth
https://doi.org/10.1007/978-94-015-8751-8 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Shevrin, Lev N.
Semigroups and Their Subsemigroup Lattices
Mathematics
Group theory
Algebra
Logic, Symbolic and mathematical
Group Theory and Generalizations
Order, Lattices, Ordered Algebraic Structures
Mathematical Logic and Foundations
Mathematik
Unterhalbgruppe (DE-588)4186987-4 gnd
Halbgruppe (DE-588)4022990-7 gnd
Verband Mathematik (DE-588)4062565-5 gnd
subject_GND (DE-588)4186987-4
(DE-588)4022990-7
(DE-588)4062565-5
title Semigroups and Their Subsemigroup Lattices
title_auth Semigroups and Their Subsemigroup Lattices
title_exact_search Semigroups and Their Subsemigroup Lattices
title_full Semigroups and Their Subsemigroup Lattices by Lev N. Shevrin, Alexander J. Ovsyannikov
title_fullStr Semigroups and Their Subsemigroup Lattices by Lev N. Shevrin, Alexander J. Ovsyannikov
title_full_unstemmed Semigroups and Their Subsemigroup Lattices by Lev N. Shevrin, Alexander J. Ovsyannikov
title_short Semigroups and Their Subsemigroup Lattices
title_sort semigroups and their subsemigroup lattices
topic Mathematics
Group theory
Algebra
Logic, Symbolic and mathematical
Group Theory and Generalizations
Order, Lattices, Ordered Algebraic Structures
Mathematical Logic and Foundations
Mathematik
Unterhalbgruppe (DE-588)4186987-4 gnd
Halbgruppe (DE-588)4022990-7 gnd
Verband Mathematik (DE-588)4062565-5 gnd
topic_facet Mathematics
Group theory
Algebra
Logic, Symbolic and mathematical
Group Theory and Generalizations
Order, Lattices, Ordered Algebraic Structures
Mathematical Logic and Foundations
Mathematik
Unterhalbgruppe
Halbgruppe
Verband Mathematik
url https://doi.org/10.1007/978-94-015-8751-8
work_keys_str_mv AT shevrinlevn semigroupsandtheirsubsemigrouplattices
AT ovsyannikovalexanderj semigroupsandtheirsubsemigrouplattices