Semidistributive Modules and Rings

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Tuganbaev, Askar A. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1998
Schriftenreihe:Mathematics and Its Applications 449
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042423965
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1998 xx o|||| 00||| eng d
020 |a 9789401150866  |c Online  |9 978-94-011-5086-6 
020 |a 9789401061360  |c Print  |9 978-94-010-6136-0 
024 7 |a 10.1007/978-94-011-5086-6  |2 doi 
035 |a (OCoLC)863694112 
035 |a (DE-599)BVBBV042423965 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.46  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Tuganbaev, Askar A.  |e Verfasser  |4 aut 
245 1 0 |a Semidistributive Modules and Rings  |c by Askar A. Tuganbaev 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1998 
300 |a 1 Online-Ressource (X, 357 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 449 
500 |a A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F,G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive 
650 4 |a Mathematics 
650 4 |a Algebra 
650 4 |a Associative Rings and Algebras 
650 4 |a Commutative Rings and Algebras 
650 4 |a Mathematik 
856 4 0 |u https://doi.org/10.1007/978-94-011-5086-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859382 

Datensatz im Suchindex

_version_ 1819294259198558208
any_adam_object
author Tuganbaev, Askar A.
author_facet Tuganbaev, Askar A.
author_role aut
author_sort Tuganbaev, Askar A.
author_variant a a t aa aat
building Verbundindex
bvnumber BV042423965
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863694112
(DE-599)BVBBV042423965
dewey-full 512.46
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.46
dewey-search 512.46
dewey-sort 3512.46
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-011-5086-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02530nam a2200433zcb4500</leader><controlfield tag="001">BV042423965</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401150866</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-5086-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401061360</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-6136-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-5086-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863694112</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423965</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.46</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tuganbaev, Askar A.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Semidistributive Modules and Rings</subfield><subfield code="c">by Askar A. Tuganbaev</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 357 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">449</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F,G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Associative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Commutative Rings and Algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-5086-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859382</subfield></datafield></record></collection>
id DE-604.BV042423965
illustrated Not Illustrated
indexdate 2024-12-24T04:23:28Z
institution BVB
isbn 9789401150866
9789401061360
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859382
oclc_num 863694112
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 357 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Tuganbaev, Askar A. Verfasser aut
Semidistributive Modules and Rings by Askar A. Tuganbaev
Dordrecht Springer Netherlands 1998
1 Online-Ressource (X, 357 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 449
A module M is called distributive if the lattice Lat(M) of all its submodules is distributive, i.e., Fn(G + H) = FnG + FnH for all submodules F,G, and H of the module M. A module M is called uniserial if all its submodules are comparable with respect to inclusion, i.e., the lattice Lat(M) is a chain. Any direct sum of distributive (resp. uniserial) modules is called a semidistributive (resp. serial) module. The class of distributive (resp. semidistributive) modules properly cont.ains the class ofall uniserial (resp. serial) modules. In particular, all simple (resp. semisimple) modules are distributive (resp. semidistributive). All strongly regular rings (for example, all factor rings of direct products of division rings and all commutative regular rings) are distributive; all valuation rings in division rings and all commutative Dedekind rings (e.g., rings of integral algebraic numbers or commutative principal ideal rings) are distributive. A module is called a Bezout module or a locally cyclic module ifevery finitely generated submodule is cyclic. If all maximal right ideals of a ring A are ideals (e.g., if A is commutative), then all Bezout A-modules are distributive
Mathematics
Algebra
Associative Rings and Algebras
Commutative Rings and Algebras
Mathematik
https://doi.org/10.1007/978-94-011-5086-6 Verlag Volltext
spellingShingle Tuganbaev, Askar A.
Semidistributive Modules and Rings
Mathematics
Algebra
Associative Rings and Algebras
Commutative Rings and Algebras
Mathematik
title Semidistributive Modules and Rings
title_auth Semidistributive Modules and Rings
title_exact_search Semidistributive Modules and Rings
title_full Semidistributive Modules and Rings by Askar A. Tuganbaev
title_fullStr Semidistributive Modules and Rings by Askar A. Tuganbaev
title_full_unstemmed Semidistributive Modules and Rings by Askar A. Tuganbaev
title_short Semidistributive Modules and Rings
title_sort semidistributive modules and rings
topic Mathematics
Algebra
Associative Rings and Algebras
Commutative Rings and Algebras
Mathematik
topic_facet Mathematics
Algebra
Associative Rings and Algebras
Commutative Rings and Algebras
Mathematik
url https://doi.org/10.1007/978-94-011-5086-6
work_keys_str_mv AT tuganbaevaskara semidistributivemodulesandrings