Singular Quadratic Forms in Perturbation Theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Košmanenko, Volodymyr 20. Jht (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1999
Schriftenreihe:Mathematics and Its Applications 474
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042423951
003 DE-604
005 20170922
007 cr|uuu---uuuuu
008 150317s1999 |||| o||u| ||||||eng d
020 |a 9789401146197  |c Online  |9 978-94-011-4619-7 
020 |a 9789401059527  |c Print  |9 978-94-010-5952-7 
024 7 |a 10.1007/978-94-011-4619-7  |2 doi 
035 |a (OCoLC)1184374309 
035 |a (DE-599)BVBBV042423951 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.7  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Košmanenko, Volodymyr  |d 20. Jht.  |e Verfasser  |0 (DE-588)1089275188  |4 aut 
245 1 0 |a Singular Quadratic Forms in Perturbation Theory  |c by Volodymyr Koshmanenko 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1999 
300 |a 1 Online-Ressource (VIII, 312 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a Mathematics and Its Applications  |v 474 
500 |a The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturbation terms with singular properties. Typical examples of such expressions are Schrödinger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P( 
650 4 |a Mathematics 
650 4 |a Functional analysis 
650 4 |a Operator theory 
650 4 |a Quantum theory 
650 4 |a Functional Analysis 
650 4 |a Operator Theory 
650 4 |a Elementary Particles, Quantum Field Theory 
650 4 |a Mathematik 
650 4 |a Quantentheorie 
650 0 7 |a Störungstheorie  |0 (DE-588)4128420-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Quadratische Form  |0 (DE-588)4128297-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Selbstadjungierter Operator  |0 (DE-588)4180810-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Quantenfeldtheorie  |0 (DE-588)4047984-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Quadratische Form  |0 (DE-588)4128297-8  |D s 
689 0 1 |a Selbstadjungierter Operator  |0 (DE-588)4180810-1  |D s 
689 0 2 |a Störungstheorie  |0 (DE-588)4128420-3  |D s 
689 0 3 |a Quantenfeldtheorie  |0 (DE-588)4047984-5  |D s 
689 0 |8 1\p  |5 DE-604 
830 0 |a Mathematics and Its Applications  |v 474  |w (DE-604)BV008163334  |9 474 
856 4 0 |u https://doi.org/10.1007/978-94-011-4619-7  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027859368 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2070959
_version_ 1816714050816442368
any_adam_object
author Košmanenko, Volodymyr 20. Jht
author_GND (DE-588)1089275188
author_facet Košmanenko, Volodymyr 20. Jht
author_role aut
author_sort Košmanenko, Volodymyr 20. Jht
author_variant v k vk
building Verbundindex
bvnumber BV042423951
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184374309
(DE-599)BVBBV042423951
dewey-full 515.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.7
dewey-search 515.7
dewey-sort 3515.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-011-4619-7
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02740nmm a2200601zcb4500</leader><controlfield tag="001">BV042423951</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170922 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401146197</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-4619-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401059527</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-5952-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-4619-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184374309</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423951</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Košmanenko, Volodymyr</subfield><subfield code="d">20. Jht.</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1089275188</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Singular Quadratic Forms in Perturbation Theory</subfield><subfield code="c">by Volodymyr Koshmanenko</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 312 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">474</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The notion of singular quadratic form appears in mathematical physics as a tool for the investigation of formal expressions corresponding to perturbations devoid of operator sense. Numerous physical models are based on the use of Hamiltonians containing perturbation terms with singular properties. Typical examples of such expressions are Schrödinger operators with O-potentials (-~ + AD) and Hamiltonians in quantum field theory with perturbations given in terms of operators of creation and annihilation (P(</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elementary Particles, Quantum Field Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantentheorie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Selbstadjungierter Operator</subfield><subfield code="0">(DE-588)4180810-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Störungstheorie</subfield><subfield code="0">(DE-588)4128420-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Quantenfeldtheorie</subfield><subfield code="0">(DE-588)4047984-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">474</subfield><subfield code="w">(DE-604)BV008163334</subfield><subfield code="9">474</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-4619-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859368</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042423951
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9789401146197
9789401059527
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859368
oclc_num 1184374309
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VIII, 312 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Springer Netherlands
record_format marc
series Mathematics and Its Applications
series2 Mathematics and Its Applications
spellingShingle Košmanenko, Volodymyr 20. Jht
Singular Quadratic Forms in Perturbation Theory
Mathematics and Its Applications
Mathematics
Functional analysis
Operator theory
Quantum theory
Functional Analysis
Operator Theory
Elementary Particles, Quantum Field Theory
Mathematik
Quantentheorie
Störungstheorie (DE-588)4128420-3 gnd
Quadratische Form (DE-588)4128297-8 gnd
Selbstadjungierter Operator (DE-588)4180810-1 gnd
Quantenfeldtheorie (DE-588)4047984-5 gnd
subject_GND (DE-588)4128420-3
(DE-588)4128297-8
(DE-588)4180810-1
(DE-588)4047984-5
title Singular Quadratic Forms in Perturbation Theory
title_auth Singular Quadratic Forms in Perturbation Theory
title_exact_search Singular Quadratic Forms in Perturbation Theory
title_full Singular Quadratic Forms in Perturbation Theory by Volodymyr Koshmanenko
title_fullStr Singular Quadratic Forms in Perturbation Theory by Volodymyr Koshmanenko
title_full_unstemmed Singular Quadratic Forms in Perturbation Theory by Volodymyr Koshmanenko
title_short Singular Quadratic Forms in Perturbation Theory
title_sort singular quadratic forms in perturbation theory
topic Mathematics
Functional analysis
Operator theory
Quantum theory
Functional Analysis
Operator Theory
Elementary Particles, Quantum Field Theory
Mathematik
Quantentheorie
Störungstheorie (DE-588)4128420-3 gnd
Quadratische Form (DE-588)4128297-8 gnd
Selbstadjungierter Operator (DE-588)4180810-1 gnd
Quantenfeldtheorie (DE-588)4047984-5 gnd
topic_facet Mathematics
Functional analysis
Operator theory
Quantum theory
Functional Analysis
Operator Theory
Elementary Particles, Quantum Field Theory
Mathematik
Quantentheorie
Störungstheorie
Quadratische Form
Selbstadjungierter Operator
Quantenfeldtheorie
url https://doi.org/10.1007/978-94-011-4619-7
volume_link (DE-604)BV008163334
work_keys_str_mv AT kosmanenkovolodymyr singularquadraticformsinperturbationtheory