Error Inequalities in Polynomial Interpolation and Their Applications

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Agarwal, Ravi P. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1993
Schriftenreihe:Mathematics and Its Applications 262
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042423874
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1993 xx o|||| 00||| eng d
020 |a 9789401120265  |c Online  |9 978-94-011-2026-5 
020 |a 9789401048965  |c Print  |9 978-94-010-4896-5 
024 7 |a 10.1007/978-94-011-2026-5  |2 doi 
035 |a (OCoLC)1184265263 
035 |a (DE-599)BVBBV042423874 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 511.4  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Agarwal, Ravi P.  |e Verfasser  |4 aut 
245 1 0 |a Error Inequalities in Polynomial Interpolation and Their Applications  |c by Ravi P. Agarwal, Patricia J. Y. Wong 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1993 
300 |a 1 Online-Ressource (X, 366 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 262 
500 |a Given a function x(t) E c{n) [a, bj, points a = al < a2 < . . . < ar = b and subsets aj of {0,1,"',n -1} with L:j=lcard(aj) = n, the classical interpolation problem is to find a polynomial P - (t) of degree at most (n - 1) n l such that P~~l(aj) = x{i)(aj) for i E aj, j = 1,2,"" r. In the first four chapters of this monograph we shall consider respectively the cases: the Lidstone interpolation (a = 0, b = 1, n = 2m, r = 2, al = a2 = {a, 2"", 2m - 2}), the Hermite interpolation (aj = {a, 1,' ", kj - I}), the Abel - Gontscharoff interpolation (r = n, ai ~ ai+l, aj = {j - I}), and the several particular cases of the Birkhoff interpolation. For each of these problems we shall offer: (1) explicit representations of the interpolating polynomial; (2) explicit representations of the associated error function e(t) = x(t) - Pn-l(t); and (3) explicit optimal/sharp constants Cn,k so that the inequalities k I e{k)(t) I < C k(b -at- max I x{n)(t) I, 0< k < n - 1 n -, a$t$b - are satisfied. In addition, for the Hermite interpolation we shall provide explicit opti­ mal/sharp constants C(n,p, v) so that the inequality II e(t) lip:::; C(n,p, v) II x{n)(t) 1111, p, v ~ 1 holds 
650 4 |a Mathematics 
650 4 |a Differential Equations 
650 4 |a Computer science / Mathematics 
650 4 |a Approximations and Expansions 
650 4 |a Computational Mathematics and Numerical Analysis 
650 4 |a Applications of Mathematics 
650 4 |a Ordinary Differential Equations 
650 4 |a Informatik 
650 4 |a Mathematik 
650 0 7 |a Fehlerabschätzung  |0 (DE-588)4228085-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Polynom-Interpolationsverfahren  |0 (DE-588)4175264-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Polynom-Interpolationsverfahren  |0 (DE-588)4175264-8  |D s 
689 0 1 |a Fehlerabschätzung  |0 (DE-588)4228085-0  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Wong, Patricia J. Y.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-94-011-2026-5  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859291 

Datensatz im Suchindex

_version_ 1819294258998280192
any_adam_object
author Agarwal, Ravi P.
author_facet Agarwal, Ravi P.
author_role aut
author_sort Agarwal, Ravi P.
author_variant r p a rp rpa
building Verbundindex
bvnumber BV042423874
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184265263
(DE-599)BVBBV042423874
dewey-full 511.4
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 511 - General principles of mathematics
dewey-raw 511.4
dewey-search 511.4
dewey-sort 3511.4
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-011-2026-5
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03212nam a2200565zcb4500</leader><controlfield tag="001">BV042423874</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401120265</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-2026-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401048965</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4896-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-2026-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184265263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423874</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agarwal, Ravi P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Error Inequalities in Polynomial Interpolation and Their Applications</subfield><subfield code="c">by Ravi P. Agarwal, Patricia J. Y. Wong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 366 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">262</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Given a function x(t) E c{n) [a, bj, points a = al &lt; a2 &lt; . . . &lt; ar = b and subsets aj of {0,1,"',n -1} with L:j=lcard(aj) = n, the classical interpolation problem is to find a polynomial P - (t) of degree at most (n - 1) n l such that P~~l(aj) = x{i)(aj) for i E aj, j = 1,2,"" r. In the first four chapters of this monograph we shall consider respectively the cases: the Lidstone interpolation (a = 0, b = 1, n = 2m, r = 2, al = a2 = {a, 2"", 2m - 2}), the Hermite interpolation (aj = {a, 1,' ", kj - I}), the Abel - Gontscharoff interpolation (r = n, ai ~ ai+l, aj = {j - I}), and the several particular cases of the Birkhoff interpolation. For each of these problems we shall offer: (1) explicit representations of the interpolating polynomial; (2) explicit representations of the associated error function e(t) = x(t) - Pn-l(t); and (3) explicit optimal/sharp constants Cn,k so that the inequalities k I e{k)(t) I &lt; C k(b -at- max I x{n)(t) I, 0&lt; k &lt; n - 1 n -, a$t$b - are satisfied. In addition, for the Hermite interpolation we shall provide explicit opti­ mal/sharp constants C(n,p, v) so that the inequality II e(t) lip:::; C(n,p, v) II x{n)(t) 1111, p, v ~ 1 holds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fehlerabschätzung</subfield><subfield code="0">(DE-588)4228085-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom-Interpolationsverfahren</subfield><subfield code="0">(DE-588)4175264-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynom-Interpolationsverfahren</subfield><subfield code="0">(DE-588)4175264-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fehlerabschätzung</subfield><subfield code="0">(DE-588)4228085-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Patricia J. Y.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-2026-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859291</subfield></datafield></record></collection>
id DE-604.BV042423874
illustrated Not Illustrated
indexdate 2024-12-24T04:23:28Z
institution BVB
isbn 9789401120265
9789401048965
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859291
oclc_num 1184265263
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 366 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Agarwal, Ravi P. Verfasser aut
Error Inequalities in Polynomial Interpolation and Their Applications by Ravi P. Agarwal, Patricia J. Y. Wong
Dordrecht Springer Netherlands 1993
1 Online-Ressource (X, 366 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 262
Given a function x(t) E c{n) [a, bj, points a = al < a2 < . . . < ar = b and subsets aj of {0,1,"',n -1} with L:j=lcard(aj) = n, the classical interpolation problem is to find a polynomial P - (t) of degree at most (n - 1) n l such that P~~l(aj) = x{i)(aj) for i E aj, j = 1,2,"" r. In the first four chapters of this monograph we shall consider respectively the cases: the Lidstone interpolation (a = 0, b = 1, n = 2m, r = 2, al = a2 = {a, 2"", 2m - 2}), the Hermite interpolation (aj = {a, 1,' ", kj - I}), the Abel - Gontscharoff interpolation (r = n, ai ~ ai+l, aj = {j - I}), and the several particular cases of the Birkhoff interpolation. For each of these problems we shall offer: (1) explicit representations of the interpolating polynomial; (2) explicit representations of the associated error function e(t) = x(t) - Pn-l(t); and (3) explicit optimal/sharp constants Cn,k so that the inequalities k I e{k)(t) I < C k(b -at- max I x{n)(t) I, 0< k < n - 1 n -, a$t$b - are satisfied. In addition, for the Hermite interpolation we shall provide explicit opti­ mal/sharp constants C(n,p, v) so that the inequality II e(t) lip:::; C(n,p, v) II x{n)(t) 1111, p, v ~ 1 holds
Mathematics
Differential Equations
Computer science / Mathematics
Approximations and Expansions
Computational Mathematics and Numerical Analysis
Applications of Mathematics
Ordinary Differential Equations
Informatik
Mathematik
Fehlerabschätzung (DE-588)4228085-0 gnd rswk-swf
Polynom-Interpolationsverfahren (DE-588)4175264-8 gnd rswk-swf
Polynom-Interpolationsverfahren (DE-588)4175264-8 s
Fehlerabschätzung (DE-588)4228085-0 s
1\p DE-604
Wong, Patricia J. Y. Sonstige oth
https://doi.org/10.1007/978-94-011-2026-5 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Agarwal, Ravi P.
Error Inequalities in Polynomial Interpolation and Their Applications
Mathematics
Differential Equations
Computer science / Mathematics
Approximations and Expansions
Computational Mathematics and Numerical Analysis
Applications of Mathematics
Ordinary Differential Equations
Informatik
Mathematik
Fehlerabschätzung (DE-588)4228085-0 gnd
Polynom-Interpolationsverfahren (DE-588)4175264-8 gnd
subject_GND (DE-588)4228085-0
(DE-588)4175264-8
title Error Inequalities in Polynomial Interpolation and Their Applications
title_auth Error Inequalities in Polynomial Interpolation and Their Applications
title_exact_search Error Inequalities in Polynomial Interpolation and Their Applications
title_full Error Inequalities in Polynomial Interpolation and Their Applications by Ravi P. Agarwal, Patricia J. Y. Wong
title_fullStr Error Inequalities in Polynomial Interpolation and Their Applications by Ravi P. Agarwal, Patricia J. Y. Wong
title_full_unstemmed Error Inequalities in Polynomial Interpolation and Their Applications by Ravi P. Agarwal, Patricia J. Y. Wong
title_short Error Inequalities in Polynomial Interpolation and Their Applications
title_sort error inequalities in polynomial interpolation and their applications
topic Mathematics
Differential Equations
Computer science / Mathematics
Approximations and Expansions
Computational Mathematics and Numerical Analysis
Applications of Mathematics
Ordinary Differential Equations
Informatik
Mathematik
Fehlerabschätzung (DE-588)4228085-0 gnd
Polynom-Interpolationsverfahren (DE-588)4175264-8 gnd
topic_facet Mathematics
Differential Equations
Computer science / Mathematics
Approximations and Expansions
Computational Mathematics and Numerical Analysis
Applications of Mathematics
Ordinary Differential Equations
Informatik
Mathematik
Fehlerabschätzung
Polynom-Interpolationsverfahren
url https://doi.org/10.1007/978-94-011-2026-5
work_keys_str_mv AT agarwalravip errorinequalitiesinpolynomialinterpolationandtheirapplications
AT wongpatriciajy errorinequalitiesinpolynomialinterpolationandtheirapplications