Error Inequalities in Polynomial Interpolation and Their Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1993
|
Schriftenreihe: | Mathematics and Its Applications
262 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423874 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 xx o|||| 00||| eng d | ||
020 | |a 9789401120265 |c Online |9 978-94-011-2026-5 | ||
020 | |a 9789401048965 |c Print |9 978-94-010-4896-5 | ||
024 | 7 | |a 10.1007/978-94-011-2026-5 |2 doi | |
035 | |a (OCoLC)1184265263 | ||
035 | |a (DE-599)BVBBV042423874 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 511.4 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Agarwal, Ravi P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Error Inequalities in Polynomial Interpolation and Their Applications |c by Ravi P. Agarwal, Patricia J. Y. Wong |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1993 | |
300 | |a 1 Online-Ressource (X, 366 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 262 | |
500 | |a Given a function x(t) E c{n) [a, bj, points a = al < a2 < . . . < ar = b and subsets aj of {0,1,"',n -1} with L:j=lcard(aj) = n, the classical interpolation problem is to find a polynomial P - (t) of degree at most (n - 1) n l such that P~~l(aj) = x{i)(aj) for i E aj, j = 1,2,"" r. In the first four chapters of this monograph we shall consider respectively the cases: the Lidstone interpolation (a = 0, b = 1, n = 2m, r = 2, al = a2 = {a, 2"", 2m - 2}), the Hermite interpolation (aj = {a, 1,' ", kj - I}), the Abel - Gontscharoff interpolation (r = n, ai ~ ai+l, aj = {j - I}), and the several particular cases of the Birkhoff interpolation. For each of these problems we shall offer: (1) explicit representations of the interpolating polynomial; (2) explicit representations of the associated error function e(t) = x(t) - Pn-l(t); and (3) explicit optimal/sharp constants Cn,k so that the inequalities k I e{k)(t) I < C k(b -at- max I x{n)(t) I, 0< k < n - 1 n -, a$t$b - are satisfied. In addition, for the Hermite interpolation we shall provide explicit opti mal/sharp constants C(n,p, v) so that the inequality II e(t) lip:::; C(n,p, v) II x{n)(t) 1111, p, v ~ 1 holds | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Approximations and Expansions | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Fehlerabschätzung |0 (DE-588)4228085-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Polynom-Interpolationsverfahren |0 (DE-588)4175264-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Polynom-Interpolationsverfahren |0 (DE-588)4175264-8 |D s |
689 | 0 | 1 | |a Fehlerabschätzung |0 (DE-588)4228085-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Wong, Patricia J. Y. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-2026-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027859291 |
Datensatz im Suchindex
_version_ | 1819294258998280192 |
---|---|
any_adam_object | |
author | Agarwal, Ravi P. |
author_facet | Agarwal, Ravi P. |
author_role | aut |
author_sort | Agarwal, Ravi P. |
author_variant | r p a rp rpa |
building | Verbundindex |
bvnumber | BV042423874 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184265263 (DE-599)BVBBV042423874 |
dewey-full | 511.4 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 511 - General principles of mathematics |
dewey-raw | 511.4 |
dewey-search | 511.4 |
dewey-sort | 3511.4 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-2026-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03212nam a2200565zcb4500</leader><controlfield tag="001">BV042423874</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401120265</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-2026-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401048965</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4896-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-2026-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184265263</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423874</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">511.4</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Agarwal, Ravi P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Error Inequalities in Polynomial Interpolation and Their Applications</subfield><subfield code="c">by Ravi P. Agarwal, Patricia J. Y. Wong</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 366 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">262</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Given a function x(t) E c{n) [a, bj, points a = al < a2 < . . . < ar = b and subsets aj of {0,1,"',n -1} with L:j=lcard(aj) = n, the classical interpolation problem is to find a polynomial P - (t) of degree at most (n - 1) n l such that P~~l(aj) = x{i)(aj) for i E aj, j = 1,2,"" r. In the first four chapters of this monograph we shall consider respectively the cases: the Lidstone interpolation (a = 0, b = 1, n = 2m, r = 2, al = a2 = {a, 2"", 2m - 2}), the Hermite interpolation (aj = {a, 1,' ", kj - I}), the Abel - Gontscharoff interpolation (r = n, ai ~ ai+l, aj = {j - I}), and the several particular cases of the Birkhoff interpolation. For each of these problems we shall offer: (1) explicit representations of the interpolating polynomial; (2) explicit representations of the associated error function e(t) = x(t) - Pn-l(t); and (3) explicit optimal/sharp constants Cn,k so that the inequalities k I e{k)(t) I < C k(b -at- max I x{n)(t) I, 0< k < n - 1 n -, a$t$b - are satisfied. In addition, for the Hermite interpolation we shall provide explicit opti mal/sharp constants C(n,p, v) so that the inequality II e(t) lip:::; C(n,p, v) II x{n)(t) 1111, p, v ~ 1 holds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximations and Expansions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fehlerabschätzung</subfield><subfield code="0">(DE-588)4228085-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Polynom-Interpolationsverfahren</subfield><subfield code="0">(DE-588)4175264-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Polynom-Interpolationsverfahren</subfield><subfield code="0">(DE-588)4175264-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fehlerabschätzung</subfield><subfield code="0">(DE-588)4228085-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wong, Patricia J. Y.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-2026-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859291</subfield></datafield></record></collection> |
id | DE-604.BV042423874 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:28Z |
institution | BVB |
isbn | 9789401120265 9789401048965 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859291 |
oclc_num | 1184265263 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 366 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Agarwal, Ravi P. Verfasser aut Error Inequalities in Polynomial Interpolation and Their Applications by Ravi P. Agarwal, Patricia J. Y. Wong Dordrecht Springer Netherlands 1993 1 Online-Ressource (X, 366 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 262 Given a function x(t) E c{n) [a, bj, points a = al < a2 < . . . < ar = b and subsets aj of {0,1,"',n -1} with L:j=lcard(aj) = n, the classical interpolation problem is to find a polynomial P - (t) of degree at most (n - 1) n l such that P~~l(aj) = x{i)(aj) for i E aj, j = 1,2,"" r. In the first four chapters of this monograph we shall consider respectively the cases: the Lidstone interpolation (a = 0, b = 1, n = 2m, r = 2, al = a2 = {a, 2"", 2m - 2}), the Hermite interpolation (aj = {a, 1,' ", kj - I}), the Abel - Gontscharoff interpolation (r = n, ai ~ ai+l, aj = {j - I}), and the several particular cases of the Birkhoff interpolation. For each of these problems we shall offer: (1) explicit representations of the interpolating polynomial; (2) explicit representations of the associated error function e(t) = x(t) - Pn-l(t); and (3) explicit optimal/sharp constants Cn,k so that the inequalities k I e{k)(t) I < C k(b -at- max I x{n)(t) I, 0< k < n - 1 n -, a$t$b - are satisfied. In addition, for the Hermite interpolation we shall provide explicit opti mal/sharp constants C(n,p, v) so that the inequality II e(t) lip:::; C(n,p, v) II x{n)(t) 1111, p, v ~ 1 holds Mathematics Differential Equations Computer science / Mathematics Approximations and Expansions Computational Mathematics and Numerical Analysis Applications of Mathematics Ordinary Differential Equations Informatik Mathematik Fehlerabschätzung (DE-588)4228085-0 gnd rswk-swf Polynom-Interpolationsverfahren (DE-588)4175264-8 gnd rswk-swf Polynom-Interpolationsverfahren (DE-588)4175264-8 s Fehlerabschätzung (DE-588)4228085-0 s 1\p DE-604 Wong, Patricia J. Y. Sonstige oth https://doi.org/10.1007/978-94-011-2026-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Agarwal, Ravi P. Error Inequalities in Polynomial Interpolation and Their Applications Mathematics Differential Equations Computer science / Mathematics Approximations and Expansions Computational Mathematics and Numerical Analysis Applications of Mathematics Ordinary Differential Equations Informatik Mathematik Fehlerabschätzung (DE-588)4228085-0 gnd Polynom-Interpolationsverfahren (DE-588)4175264-8 gnd |
subject_GND | (DE-588)4228085-0 (DE-588)4175264-8 |
title | Error Inequalities in Polynomial Interpolation and Their Applications |
title_auth | Error Inequalities in Polynomial Interpolation and Their Applications |
title_exact_search | Error Inequalities in Polynomial Interpolation and Their Applications |
title_full | Error Inequalities in Polynomial Interpolation and Their Applications by Ravi P. Agarwal, Patricia J. Y. Wong |
title_fullStr | Error Inequalities in Polynomial Interpolation and Their Applications by Ravi P. Agarwal, Patricia J. Y. Wong |
title_full_unstemmed | Error Inequalities in Polynomial Interpolation and Their Applications by Ravi P. Agarwal, Patricia J. Y. Wong |
title_short | Error Inequalities in Polynomial Interpolation and Their Applications |
title_sort | error inequalities in polynomial interpolation and their applications |
topic | Mathematics Differential Equations Computer science / Mathematics Approximations and Expansions Computational Mathematics and Numerical Analysis Applications of Mathematics Ordinary Differential Equations Informatik Mathematik Fehlerabschätzung (DE-588)4228085-0 gnd Polynom-Interpolationsverfahren (DE-588)4175264-8 gnd |
topic_facet | Mathematics Differential Equations Computer science / Mathematics Approximations and Expansions Computational Mathematics and Numerical Analysis Applications of Mathematics Ordinary Differential Equations Informatik Mathematik Fehlerabschätzung Polynom-Interpolationsverfahren |
url | https://doi.org/10.1007/978-94-011-2026-5 |
work_keys_str_mv | AT agarwalravip errorinequalitiesinpolynomialinterpolationandtheirapplications AT wongpatriciajy errorinequalitiesinpolynomialinterpolationandtheirapplications |