Carleman’s Formulas in Complex Analysis Theory and Applications
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Dordrecht
Springer Netherlands
1993
|
Schriftenreihe: | Mathematics and Its Applications
244 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423850 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 xx o|||| 00||| eng d | ||
020 | |a 9789401115964 |c Online |9 978-94-011-1596-4 | ||
020 | |a 9789401046954 |c Print |9 978-94-010-4695-4 | ||
024 | 7 | |a 10.1007/978-94-011-1596-4 |2 doi | |
035 | |a (OCoLC)1184279111 | ||
035 | |a (DE-599)BVBBV042423850 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.9 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Aizenberg, Lev |e Verfasser |4 aut | |
245 | 1 | 0 | |a Carleman’s Formulas in Complex Analysis |b Theory and Applications |c by Lev Aizenberg |
264 | 1 | |a Dordrecht |b Springer Netherlands |c 1993 | |
300 | |a 1 Online-Ressource (XX, 299 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics and Its Applications |v 244 | |
500 | |a Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functions of complex variables | |
650 | 4 | |a Functions of a Complex Variable | |
650 | 4 | |a Signal, Image and Speech Processing | |
650 | 4 | |a Applications of Mathematics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionentheorie |0 (DE-588)4018935-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Carleman-Methode |0 (DE-588)4288492-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Carleman-Methode |0 (DE-588)4288492-5 |D s |
689 | 0 | 1 | |a Funktionentheorie |0 (DE-588)4018935-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-94-011-1596-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027859267 |
Datensatz im Suchindex
_version_ | 1819294258961580032 |
---|---|
any_adam_object | |
author | Aizenberg, Lev |
author_facet | Aizenberg, Lev |
author_role | aut |
author_sort | Aizenberg, Lev |
author_variant | l a la |
building | Verbundindex |
bvnumber | BV042423850 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184279111 (DE-599)BVBBV042423850 |
dewey-full | 515.9 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.9 |
dewey-search | 515.9 |
dewey-sort | 3515.9 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-94-011-1596-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02720nam a2200517zcb4500</leader><controlfield tag="001">BV042423850</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401115964</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1596-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401046954</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4695-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1596-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184279111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423850</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aizenberg, Lev</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Carleman’s Formulas in Complex Analysis</subfield><subfield code="b">Theory and Applications</subfield><subfield code="c">by Lev Aizenberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 299 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">244</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Carleman-Methode</subfield><subfield code="0">(DE-588)4288492-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Carleman-Methode</subfield><subfield code="0">(DE-588)4288492-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1596-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859267</subfield></datafield></record></collection> |
id | DE-604.BV042423850 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:28Z |
institution | BVB |
isbn | 9789401115964 9789401046954 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027859267 |
oclc_num | 1184279111 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 299 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Springer Netherlands |
record_format | marc |
series2 | Mathematics and Its Applications |
spelling | Aizenberg, Lev Verfasser aut Carleman’s Formulas in Complex Analysis Theory and Applications by Lev Aizenberg Dordrecht Springer Netherlands 1993 1 Online-Ressource (XX, 299 p) txt rdacontent c rdamedia cr rdacarrier Mathematics and Its Applications 244 Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1) Mathematics Functions of complex variables Functions of a Complex Variable Signal, Image and Speech Processing Applications of Mathematics Mathematik Funktionentheorie (DE-588)4018935-1 gnd rswk-swf Carleman-Methode (DE-588)4288492-5 gnd rswk-swf Carleman-Methode (DE-588)4288492-5 s Funktionentheorie (DE-588)4018935-1 s 1\p DE-604 https://doi.org/10.1007/978-94-011-1596-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Aizenberg, Lev Carleman’s Formulas in Complex Analysis Theory and Applications Mathematics Functions of complex variables Functions of a Complex Variable Signal, Image and Speech Processing Applications of Mathematics Mathematik Funktionentheorie (DE-588)4018935-1 gnd Carleman-Methode (DE-588)4288492-5 gnd |
subject_GND | (DE-588)4018935-1 (DE-588)4288492-5 |
title | Carleman’s Formulas in Complex Analysis Theory and Applications |
title_auth | Carleman’s Formulas in Complex Analysis Theory and Applications |
title_exact_search | Carleman’s Formulas in Complex Analysis Theory and Applications |
title_full | Carleman’s Formulas in Complex Analysis Theory and Applications by Lev Aizenberg |
title_fullStr | Carleman’s Formulas in Complex Analysis Theory and Applications by Lev Aizenberg |
title_full_unstemmed | Carleman’s Formulas in Complex Analysis Theory and Applications by Lev Aizenberg |
title_short | Carleman’s Formulas in Complex Analysis |
title_sort | carleman s formulas in complex analysis theory and applications |
title_sub | Theory and Applications |
topic | Mathematics Functions of complex variables Functions of a Complex Variable Signal, Image and Speech Processing Applications of Mathematics Mathematik Funktionentheorie (DE-588)4018935-1 gnd Carleman-Methode (DE-588)4288492-5 gnd |
topic_facet | Mathematics Functions of complex variables Functions of a Complex Variable Signal, Image and Speech Processing Applications of Mathematics Mathematik Funktionentheorie Carleman-Methode |
url | https://doi.org/10.1007/978-94-011-1596-4 |
work_keys_str_mv | AT aizenberglev carlemansformulasincomplexanalysistheoryandapplications |