Carleman’s Formulas in Complex Analysis Theory and Applications

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Aizenberg, Lev (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Dordrecht Springer Netherlands 1993
Schriftenreihe:Mathematics and Its Applications 244
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042423850
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1993 xx o|||| 00||| eng d
020 |a 9789401115964  |c Online  |9 978-94-011-1596-4 
020 |a 9789401046954  |c Print  |9 978-94-010-4695-4 
024 7 |a 10.1007/978-94-011-1596-4  |2 doi 
035 |a (OCoLC)1184279111 
035 |a (DE-599)BVBBV042423850 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.9  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Aizenberg, Lev  |e Verfasser  |4 aut 
245 1 0 |a Carleman’s Formulas in Complex Analysis  |b Theory and Applications  |c by Lev Aizenberg 
264 1 |a Dordrecht  |b Springer Netherlands  |c 1993 
300 |a 1 Online-Ressource (XX, 299 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Mathematics and Its Applications  |v 244 
500 |a Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com­ plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do­ main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1) 
650 4 |a Mathematics 
650 4 |a Functions of complex variables 
650 4 |a Functions of a Complex Variable 
650 4 |a Signal, Image and Speech Processing 
650 4 |a Applications of Mathematics 
650 4 |a Mathematik 
650 0 7 |a Funktionentheorie  |0 (DE-588)4018935-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Carleman-Methode  |0 (DE-588)4288492-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Carleman-Methode  |0 (DE-588)4288492-5  |D s 
689 0 1 |a Funktionentheorie  |0 (DE-588)4018935-1  |D s 
689 0 |8 1\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-94-011-1596-4  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027859267 

Datensatz im Suchindex

_version_ 1819294258961580032
any_adam_object
author Aizenberg, Lev
author_facet Aizenberg, Lev
author_role aut
author_sort Aizenberg, Lev
author_variant l a la
building Verbundindex
bvnumber BV042423850
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184279111
(DE-599)BVBBV042423850
dewey-full 515.9
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.9
dewey-search 515.9
dewey-sort 3515.9
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-94-011-1596-4
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02720nam a2200517zcb4500</leader><controlfield tag="001">BV042423850</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401115964</subfield><subfield code="c">Online</subfield><subfield code="9">978-94-011-1596-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9789401046954</subfield><subfield code="c">Print</subfield><subfield code="9">978-94-010-4695-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-94-011-1596-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184279111</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423850</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.9</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aizenberg, Lev</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Carleman’s Formulas in Complex Analysis</subfield><subfield code="b">Theory and Applications</subfield><subfield code="c">by Lev Aizenberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Dordrecht</subfield><subfield code="b">Springer Netherlands</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 299 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics and Its Applications</subfield><subfield code="v">244</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com­ plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do­ main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of complex variables</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functions of a Complex Variable</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Signal, Image and Speech Processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Applications of Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Carleman-Methode</subfield><subfield code="0">(DE-588)4288492-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Carleman-Methode</subfield><subfield code="0">(DE-588)4288492-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Funktionentheorie</subfield><subfield code="0">(DE-588)4018935-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-94-011-1596-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027859267</subfield></datafield></record></collection>
id DE-604.BV042423850
illustrated Not Illustrated
indexdate 2024-12-24T04:23:28Z
institution BVB
isbn 9789401115964
9789401046954
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027859267
oclc_num 1184279111
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XX, 299 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1993
publishDateSearch 1993
publishDateSort 1993
publisher Springer Netherlands
record_format marc
series2 Mathematics and Its Applications
spelling Aizenberg, Lev Verfasser aut
Carleman’s Formulas in Complex Analysis Theory and Applications by Lev Aizenberg
Dordrecht Springer Netherlands 1993
1 Online-Ressource (XX, 299 p)
txt rdacontent
c rdamedia
cr rdacarrier
Mathematics and Its Applications 244
Integral representations of holomorphic functions play an important part in the classical theory of functions of one complex variable and in multidimensional com­ plex analysis (in the later case, alongside with integration over the whole boundary aD of a domain D we frequently encounter integration over the Shilov boundary 5 = S(D)). They solve the classical problem of recovering at the points of a do­ main D a holomorphic function that is sufficiently well-behaved when approaching the boundary aD, from its values on aD or on S. Alongside with this classical problem, it is possible and natural to consider the following one: to recover the holomorphic function in D from its values on some set MeaD not containing S. Of course, M is to be a set of uniqueness for the class of holomorphic functions under consideration (for example, for the functions continuous in D or belonging to the Hardy class HP(D), p ~ 1)
Mathematics
Functions of complex variables
Functions of a Complex Variable
Signal, Image and Speech Processing
Applications of Mathematics
Mathematik
Funktionentheorie (DE-588)4018935-1 gnd rswk-swf
Carleman-Methode (DE-588)4288492-5 gnd rswk-swf
Carleman-Methode (DE-588)4288492-5 s
Funktionentheorie (DE-588)4018935-1 s
1\p DE-604
https://doi.org/10.1007/978-94-011-1596-4 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Aizenberg, Lev
Carleman’s Formulas in Complex Analysis Theory and Applications
Mathematics
Functions of complex variables
Functions of a Complex Variable
Signal, Image and Speech Processing
Applications of Mathematics
Mathematik
Funktionentheorie (DE-588)4018935-1 gnd
Carleman-Methode (DE-588)4288492-5 gnd
subject_GND (DE-588)4018935-1
(DE-588)4288492-5
title Carleman’s Formulas in Complex Analysis Theory and Applications
title_auth Carleman’s Formulas in Complex Analysis Theory and Applications
title_exact_search Carleman’s Formulas in Complex Analysis Theory and Applications
title_full Carleman’s Formulas in Complex Analysis Theory and Applications by Lev Aizenberg
title_fullStr Carleman’s Formulas in Complex Analysis Theory and Applications by Lev Aizenberg
title_full_unstemmed Carleman’s Formulas in Complex Analysis Theory and Applications by Lev Aizenberg
title_short Carleman’s Formulas in Complex Analysis
title_sort carleman s formulas in complex analysis theory and applications
title_sub Theory and Applications
topic Mathematics
Functions of complex variables
Functions of a Complex Variable
Signal, Image and Speech Processing
Applications of Mathematics
Mathematik
Funktionentheorie (DE-588)4018935-1 gnd
Carleman-Methode (DE-588)4288492-5 gnd
topic_facet Mathematics
Functions of complex variables
Functions of a Complex Variable
Signal, Image and Speech Processing
Applications of Mathematics
Mathematik
Funktionentheorie
Carleman-Methode
url https://doi.org/10.1007/978-94-011-1596-4
work_keys_str_mv AT aizenberglev carlemansformulasincomplexanalysistheoryandapplications