Proofs from THE BOOK

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Aigner, Martin (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1998
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV042423511
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1998 |||| o||u| ||||||eng d
020 |a 9783662223437  |c Online  |9 978-3-662-22343-7 
020 |a 9783662223451  |c Print  |9 978-3-662-22345-1 
024 7 |a 10.1007/978-3-662-22343-7  |2 doi 
035 |a (OCoLC)860198752 
035 |a (DE-599)BVBBV042423511 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.7  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Aigner, Martin  |e Verfasser  |4 aut 
245 1 0 |a Proofs from THE BOOK  |c by Martin Aigner, Günter M. Ziegler 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1998 
300 |a 1 Online-Ressource (VIII, 199 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a The (mathematical) heroes of this book are "perfect proofs": brilliant ideas, clever connections and wonderful observations that bring new insight and surprising perspectives on basic and challenging problems from Number Theory, Geometry, Analysis, Combinatorics, and Graph Theory. Thirty beautiful examples are presented here. They are candidates for The Book in which God records the perfect proofs - according to the late Paul Erdös, who himself suggested many of the topics in this collection. The result is a book which will be fun for everybody with an interest in mathematics, requiring only a very modest (undergraduate) mathematical background 
650 4 |a Mathematics 
650 4 |a Global analysis (Mathematics) 
650 4 |a Combinatorics 
650 4 |a Geometry 
650 4 |a Number theory 
650 4 |a Number Theory 
650 4 |a Analysis 
650 4 |a Mathematik 
650 0 7 |a Mathematische Logik  |0 (DE-588)4037951-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematik  |0 (DE-588)4037944-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Beweisführung  |0 (DE-588)4227233-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Beweis  |0 (DE-588)4132532-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Mathematische Methode  |0 (DE-588)4155620-3  |2 gnd  |9 rswk-swf 
655 7 |8 1\p  |0 (DE-588)4144384-6  |a Beispielsammlung  |2 gnd-content 
689 0 0 |a Beweis  |0 (DE-588)4132532-1  |D s 
689 0 1 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 0 |8 2\p  |5 DE-604 
689 1 0 |a Mathematik  |0 (DE-588)4037944-9  |D s 
689 1 1 |a Beweisführung  |0 (DE-588)4227233-6  |D s 
689 1 |8 3\p  |5 DE-604 
689 2 0 |a Mathematische Logik  |0 (DE-588)4037951-6  |D s 
689 2 |8 4\p  |5 DE-604 
689 3 0 |a Mathematische Methode  |0 (DE-588)4155620-3  |D s 
689 3 |8 5\p  |5 DE-604 
700 1 |a Ziegler, Günter M.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-662-22343-7  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027858928 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 5\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2070520
_version_ 1816714050688516096
any_adam_object
author Aigner, Martin
author_facet Aigner, Martin
author_role aut
author_sort Aigner, Martin
author_variant m a ma
building Verbundindex
bvnumber BV042423511
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)860198752
(DE-599)BVBBV042423511
dewey-full 512.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7
dewey-search 512.7
dewey-sort 3512.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-22343-7
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03310nmm a2200709zc 4500</leader><controlfield tag="001">BV042423511</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662223437</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-22343-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662223451</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-22345-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-22343-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860198752</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423511</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aigner, Martin</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proofs from THE BOOK</subfield><subfield code="c">by Martin Aigner, Günter M. Ziegler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 199 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The (mathematical) heroes of this book are "perfect proofs": brilliant ideas, clever connections and wonderful observations that bring new insight and surprising perspectives on basic and challenging problems from Number Theory, Geometry, Analysis, Combinatorics, and Graph Theory. Thirty beautiful examples are presented here. They are candidates for The Book in which God records the perfect proofs - according to the late Paul Erdös, who himself suggested many of the topics in this collection. The result is a book which will be fun for everybody with an interest in mathematics, requiring only a very modest (undergraduate) mathematical background</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweisführung</subfield><subfield code="0">(DE-588)4227233-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4144384-6</subfield><subfield code="a">Beispielsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Beweis</subfield><subfield code="0">(DE-588)4132532-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Beweisführung</subfield><subfield code="0">(DE-588)4227233-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Mathematische Logik</subfield><subfield code="0">(DE-588)4037951-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Mathematische Methode</subfield><subfield code="0">(DE-588)4155620-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ziegler, Günter M.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-22343-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858928</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
genre 1\p (DE-588)4144384-6 Beispielsammlung gnd-content
genre_facet Beispielsammlung
id DE-604.BV042423511
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9783662223437
9783662223451
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858928
oclc_num 860198752
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VIII, 199 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer Berlin Heidelberg
record_format marc
spellingShingle Aigner, Martin
Proofs from THE BOOK
Mathematics
Global analysis (Mathematics)
Combinatorics
Geometry
Number theory
Number Theory
Analysis
Mathematik
Mathematische Logik (DE-588)4037951-6 gnd
Mathematik (DE-588)4037944-9 gnd
Beweisführung (DE-588)4227233-6 gnd
Beweis (DE-588)4132532-1 gnd
Mathematische Methode (DE-588)4155620-3 gnd
subject_GND (DE-588)4037951-6
(DE-588)4037944-9
(DE-588)4227233-6
(DE-588)4132532-1
(DE-588)4155620-3
(DE-588)4144384-6
title Proofs from THE BOOK
title_auth Proofs from THE BOOK
title_exact_search Proofs from THE BOOK
title_full Proofs from THE BOOK by Martin Aigner, Günter M. Ziegler
title_fullStr Proofs from THE BOOK by Martin Aigner, Günter M. Ziegler
title_full_unstemmed Proofs from THE BOOK by Martin Aigner, Günter M. Ziegler
title_short Proofs from THE BOOK
title_sort proofs from the book
topic Mathematics
Global analysis (Mathematics)
Combinatorics
Geometry
Number theory
Number Theory
Analysis
Mathematik
Mathematische Logik (DE-588)4037951-6 gnd
Mathematik (DE-588)4037944-9 gnd
Beweisführung (DE-588)4227233-6 gnd
Beweis (DE-588)4132532-1 gnd
Mathematische Methode (DE-588)4155620-3 gnd
topic_facet Mathematics
Global analysis (Mathematics)
Combinatorics
Geometry
Number theory
Number Theory
Analysis
Mathematik
Mathematische Logik
Beweisführung
Beweis
Mathematische Methode
Beispielsammlung
url https://doi.org/10.1007/978-3-662-22343-7
work_keys_str_mv AT aignermartin proofsfromthebook
AT zieglergunterm proofsfromthebook