Some Nonlinear Problems in Riemannian Geometry

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Aubin, Thierry (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1998
Schriftenreihe:Springer Monographs in Mathematics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042423490
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1998 xx o|||| 00||| eng d
020 |a 9783662130063  |c Online  |9 978-3-662-13006-3 
020 |a 9783642082368  |c Print  |9 978-3-642-08236-8 
024 7 |a 10.1007/978-3-662-13006-3  |2 doi 
035 |a (OCoLC)863982561 
035 |a (DE-599)BVBBV042423490 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 516.36  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Aubin, Thierry  |e Verfasser  |4 aut 
245 1 0 |a Some Nonlinear Problems in Riemannian Geometry  |c by Thierry Aubin 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1998 
300 |a 1 Online-Ressource (XVII, 398 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Springer Monographs in Mathematics  |x 1439-7382 
500 |a During the last few years, the field of nonlinear problems has undergone great development.This book, the core of which is the content of the author's earlier book (Springer-Verlag 1983), updated and extended in each chapter, and augmented by several completely new chapters, deals with some important geometric problems that have only recently been solved or partially been solved. Each problem is explained with the present status of its solution and the most recent methods of approaching the proofs. The main aim is to explain some methods and new techniques, and to apply them to problems coming from geometry or from physics. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, topological methods. ......... 
650 4 |a Mathematics 
650 4 |a Global analysis 
650 4 |a Global differential geometry 
650 4 |a Differential Geometry 
650 4 |a Global Analysis and Analysis on Manifolds 
650 4 |a Mathematik 
650 0 7 |a Nichtlineare Theorie  |0 (DE-588)4251279-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Riemannsche Geometrie  |0 (DE-588)4128462-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare Analysis  |0 (DE-588)4177490-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Nichtlineare Differentialgeometrie  |0 (DE-588)4309230-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Riemannsche Geometrie  |0 (DE-588)4128462-8  |D s 
689 0 1 |a Nichtlineare Analysis  |0 (DE-588)4177490-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Riemannsche Geometrie  |0 (DE-588)4128462-8  |D s 
689 1 1 |a Nichtlineare Theorie  |0 (DE-588)4251279-7  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Nichtlineare Differentialgeometrie  |0 (DE-588)4309230-5  |D s 
689 2 |8 3\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-662-13006-3  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027858907 

Datensatz im Suchindex

_version_ 1819294258176196608
any_adam_object
author Aubin, Thierry
author_facet Aubin, Thierry
author_role aut
author_sort Aubin, Thierry
author_variant t a ta
building Verbundindex
bvnumber BV042423490
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863982561
(DE-599)BVBBV042423490
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-13006-3
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03229nam a2200625zc 4500</leader><controlfield tag="001">BV042423490</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662130063</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-13006-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642082368</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08236-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-13006-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863982561</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423490</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Aubin, Thierry</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Some Nonlinear Problems in Riemannian Geometry</subfield><subfield code="c">by Thierry Aubin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 398 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">During the last few years, the field of nonlinear problems has undergone great development.This book, the core of which is the content of the author's earlier book (Springer-Verlag 1983), updated and extended in each chapter, and augmented by several completely new chapters, deals with some important geometric problems that have only recently been solved or partially been solved. Each problem is explained with the present status of its solution and the most recent methods of approaching the proofs. The main aim is to explain some methods and new techniques, and to apply them to problems coming from geometry or from physics. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, topological methods. .........</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Differentialgeometrie</subfield><subfield code="0">(DE-588)4309230-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Analysis</subfield><subfield code="0">(DE-588)4177490-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Nichtlineare Theorie</subfield><subfield code="0">(DE-588)4251279-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Nichtlineare Differentialgeometrie</subfield><subfield code="0">(DE-588)4309230-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-13006-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858907</subfield></datafield></record></collection>
id DE-604.BV042423490
illustrated Not Illustrated
indexdate 2024-12-24T04:23:27Z
institution BVB
isbn 9783662130063
9783642082368
issn 1439-7382
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858907
oclc_num 863982561
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XVII, 398 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1998
publishDateSearch 1998
publishDateSort 1998
publisher Springer Berlin Heidelberg
record_format marc
series2 Springer Monographs in Mathematics
spelling Aubin, Thierry Verfasser aut
Some Nonlinear Problems in Riemannian Geometry by Thierry Aubin
Berlin, Heidelberg Springer Berlin Heidelberg 1998
1 Online-Ressource (XVII, 398 p)
txt rdacontent
c rdamedia
cr rdacarrier
Springer Monographs in Mathematics 1439-7382
During the last few years, the field of nonlinear problems has undergone great development.This book, the core of which is the content of the author's earlier book (Springer-Verlag 1983), updated and extended in each chapter, and augmented by several completely new chapters, deals with some important geometric problems that have only recently been solved or partially been solved. Each problem is explained with the present status of its solution and the most recent methods of approaching the proofs. The main aim is to explain some methods and new techniques, and to apply them to problems coming from geometry or from physics. It deals with such important subjects as variational methods, the continuity method, parabolic equations on fiber bundles, ideas concerning points of concentration, blowing-up technique, topological methods. .........
Mathematics
Global analysis
Global differential geometry
Differential Geometry
Global Analysis and Analysis on Manifolds
Mathematik
Nichtlineare Theorie (DE-588)4251279-7 gnd rswk-swf
Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf
Nichtlineare Analysis (DE-588)4177490-5 gnd rswk-swf
Nichtlineare Differentialgeometrie (DE-588)4309230-5 gnd rswk-swf
Riemannsche Geometrie (DE-588)4128462-8 s
Nichtlineare Analysis (DE-588)4177490-5 s
1\p DE-604
Nichtlineare Theorie (DE-588)4251279-7 s
2\p DE-604
Nichtlineare Differentialgeometrie (DE-588)4309230-5 s
3\p DE-604
https://doi.org/10.1007/978-3-662-13006-3 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Aubin, Thierry
Some Nonlinear Problems in Riemannian Geometry
Mathematics
Global analysis
Global differential geometry
Differential Geometry
Global Analysis and Analysis on Manifolds
Mathematik
Nichtlineare Theorie (DE-588)4251279-7 gnd
Riemannsche Geometrie (DE-588)4128462-8 gnd
Nichtlineare Analysis (DE-588)4177490-5 gnd
Nichtlineare Differentialgeometrie (DE-588)4309230-5 gnd
subject_GND (DE-588)4251279-7
(DE-588)4128462-8
(DE-588)4177490-5
(DE-588)4309230-5
title Some Nonlinear Problems in Riemannian Geometry
title_auth Some Nonlinear Problems in Riemannian Geometry
title_exact_search Some Nonlinear Problems in Riemannian Geometry
title_full Some Nonlinear Problems in Riemannian Geometry by Thierry Aubin
title_fullStr Some Nonlinear Problems in Riemannian Geometry by Thierry Aubin
title_full_unstemmed Some Nonlinear Problems in Riemannian Geometry by Thierry Aubin
title_short Some Nonlinear Problems in Riemannian Geometry
title_sort some nonlinear problems in riemannian geometry
topic Mathematics
Global analysis
Global differential geometry
Differential Geometry
Global Analysis and Analysis on Manifolds
Mathematik
Nichtlineare Theorie (DE-588)4251279-7 gnd
Riemannsche Geometrie (DE-588)4128462-8 gnd
Nichtlineare Analysis (DE-588)4177490-5 gnd
Nichtlineare Differentialgeometrie (DE-588)4309230-5 gnd
topic_facet Mathematics
Global analysis
Global differential geometry
Differential Geometry
Global Analysis and Analysis on Manifolds
Mathematik
Nichtlineare Theorie
Riemannsche Geometrie
Nichtlineare Analysis
Nichtlineare Differentialgeometrie
url https://doi.org/10.1007/978-3-662-13006-3
work_keys_str_mv AT aubinthierry somenonlinearproblemsinriemanniangeometry