Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Springer Series in Computational Mathematics
33 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423416 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 xx o|||| 00||| eng d | ||
020 | |a 9783662090176 |c Online |9 978-3-662-09017-6 | ||
020 | |a 9783642057076 |c Print |9 978-3-642-05707-6 | ||
024 | 7 | |a 10.1007/978-3-662-09017-6 |2 doi | |
035 | |a (OCoLC)879624530 | ||
035 | |a (DE-599)BVBBV042423416 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hundsdorfer, Willem |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations |c by Willem Hundsdorfer, Jan Verwer |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (X, 472 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Computational Mathematics |v 33 |x 0179-3632 | |
500 | |a This book describes numerical methods for partial differential equations (PDEs) coupling advection, diffusion and reaction terms, encompassing methods for hyperbolic, parabolic and stiff and nonstiff ordinary differential equations (ODEs). The emphasis lies on time-dependent transport-chemistry problems, describing e.g. the evolution of concentrations in environmental and biological applications. Along with the common topics of stability and convergence, much attention is paid on how to prevent spurious, negative concentrations and oscillations, both in space and time. Many of the theoretical aspects are illustrated by numerical experiments on models from biology, chemistry and physics. A unified approach is followed by emphasizing the method of lines or semi-discretization. In this regard this book differs substantially from more specialized textbooks which deal exclusively with either PDEs or ODEs. This book treats integration methods suitable for both classes of problems and thus is of interest to PDE researchers unfamiliar with advanced numerical ODE methods, as well as to ODE researchers unaware of the vast amount of interesting results on numerical PDEs. The first chapter provides a self-contained introduction to the field and can be used for an undergraduate course on the numerical solution of PDEs. The remaining four chapters are more specialized and of interest to researchers, practitioners and graduate students from numerical mathematics, scientific computing, computational physics and other computational sciences | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential Equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Ordinary Differential Equations | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Reaktions-Diffusionsgleichung |0 (DE-588)4323967-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Advektion-Diffusionsgleichung |0 (DE-588)4580212-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Advektion-Diffusionsgleichung |0 (DE-588)4580212-9 |D s |
689 | 0 | 1 | |a Reaktions-Diffusionsgleichung |0 (DE-588)4323967-5 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Verwer, Jan |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-09017-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858833 |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2070425 |
---|---|
_version_ | 1820684759892754432 |
any_adam_object | |
author | Hundsdorfer, Willem |
author_facet | Hundsdorfer, Willem |
author_role | aut |
author_sort | Hundsdorfer, Willem |
author_variant | w h wh |
building | Verbundindex |
bvnumber | BV042423416 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624530 (DE-599)BVBBV042423416 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-09017-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03702nam a2200577zcb4500</leader><controlfield tag="001">BV042423416</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662090176</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-09017-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642057076</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05707-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09017-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423416</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hundsdorfer, Willem</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations</subfield><subfield code="c">by Willem Hundsdorfer, Jan Verwer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 472 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Mathematics</subfield><subfield code="v">33</subfield><subfield code="x">0179-3632</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book describes numerical methods for partial differential equations (PDEs) coupling advection, diffusion and reaction terms, encompassing methods for hyperbolic, parabolic and stiff and nonstiff ordinary differential equations (ODEs). The emphasis lies on time-dependent transport-chemistry problems, describing e.g. the evolution of concentrations in environmental and biological applications. Along with the common topics of stability and convergence, much attention is paid on how to prevent spurious, negative concentrations and oscillations, both in space and time. Many of the theoretical aspects are illustrated by numerical experiments on models from biology, chemistry and physics. A unified approach is followed by emphasizing the method of lines or semi-discretization. In this regard this book differs substantially from more specialized textbooks which deal exclusively with either PDEs or ODEs. This book treats integration methods suitable for both classes of problems and thus is of interest to PDE researchers unfamiliar with advanced numerical ODE methods, as well as to ODE researchers unaware of the vast amount of interesting results on numerical PDEs. The first chapter provides a self-contained introduction to the field and can be used for an undergraduate course on the numerical solution of PDEs. The remaining four chapters are more specialized and of interest to researchers, practitioners and graduate students from numerical mathematics, scientific computing, computational physics and other computational sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Advektion-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4580212-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Advektion-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4580212-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verwer, Jan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09017-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858833</subfield></datafield></record></collection> |
id | DE-604.BV042423416 |
illustrated | Not Illustrated |
indexdate | 2025-01-08T13:44:53Z |
institution | BVB |
isbn | 9783662090176 9783642057076 |
issn | 0179-3632 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858833 |
oclc_num | 879624530 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 472 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Computational Mathematics |
spellingShingle | Hundsdorfer, Willem Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations Mathematics Differential Equations Differential equations, partial Numerical analysis Partial Differential Equations Ordinary Differential Equations Numerical Analysis Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd Advektion-Diffusionsgleichung (DE-588)4580212-9 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4323967-5 (DE-588)4580212-9 |
title | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations |
title_auth | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations |
title_exact_search | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations |
title_full | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by Willem Hundsdorfer, Jan Verwer |
title_fullStr | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by Willem Hundsdorfer, Jan Verwer |
title_full_unstemmed | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by Willem Hundsdorfer, Jan Verwer |
title_short | Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations |
title_sort | numerical solution of time dependent advection diffusion reaction equations |
topic | Mathematics Differential Equations Differential equations, partial Numerical analysis Partial Differential Equations Ordinary Differential Equations Numerical Analysis Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd Advektion-Diffusionsgleichung (DE-588)4580212-9 gnd |
topic_facet | Mathematics Differential Equations Differential equations, partial Numerical analysis Partial Differential Equations Ordinary Differential Equations Numerical Analysis Mathematik Numerisches Verfahren Reaktions-Diffusionsgleichung Advektion-Diffusionsgleichung |
url | https://doi.org/10.1007/978-3-662-09017-6 |
work_keys_str_mv | AT hundsdorferwillem numericalsolutionoftimedependentadvectiondiffusionreactionequations AT verwerjan numericalsolutionoftimedependentadvectiondiffusionreactionequations |