Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hundsdorfer, Willem (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 2003
Schriftenreihe:Springer Series in Computational Mathematics 33
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042423416
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s2003 xx o|||| 00||| eng d
020 |a 9783662090176  |c Online  |9 978-3-662-09017-6 
020 |a 9783642057076  |c Print  |9 978-3-642-05707-6 
024 7 |a 10.1007/978-3-662-09017-6  |2 doi 
035 |a (OCoLC)879624530 
035 |a (DE-599)BVBBV042423416 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515.353  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Hundsdorfer, Willem  |e Verfasser  |4 aut 
245 1 0 |a Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations  |c by Willem Hundsdorfer, Jan Verwer 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 2003 
300 |a 1 Online-Ressource (X, 472 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Springer Series in Computational Mathematics  |v 33  |x 0179-3632 
500 |a This book describes numerical methods for partial differential equations (PDEs) coupling advection, diffusion and reaction terms, encompassing methods for hyperbolic, parabolic and stiff and nonstiff ordinary differential equations (ODEs). The emphasis lies on time-dependent transport-chemistry problems, describing e.g. the evolution of concentrations in environmental and biological applications. Along with the common topics of stability and convergence, much attention is paid on how to prevent spurious, negative concentrations and oscillations, both in space and time. Many of the theoretical aspects are illustrated by numerical experiments on models from biology, chemistry and physics. A unified approach is followed by emphasizing the method of lines or semi-discretization. In this regard this book differs substantially from more specialized textbooks which deal exclusively with either PDEs or ODEs. This book treats integration methods suitable for both classes of problems and thus is of interest to PDE researchers unfamiliar with advanced numerical ODE methods, as well as to ODE researchers unaware of the vast amount of interesting results on numerical PDEs. The first chapter provides a self-contained introduction to the field and can be used for an undergraduate course on the numerical solution of PDEs. The remaining four chapters are more specialized and of interest to researchers, practitioners and graduate students from numerical mathematics, scientific computing, computational physics and other computational sciences 
650 4 |a Mathematics 
650 4 |a Differential Equations 
650 4 |a Differential equations, partial 
650 4 |a Numerical analysis 
650 4 |a Partial Differential Equations 
650 4 |a Ordinary Differential Equations 
650 4 |a Numerical Analysis 
650 4 |a Mathematik 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Reaktions-Diffusionsgleichung  |0 (DE-588)4323967-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Advektion-Diffusionsgleichung  |0 (DE-588)4580212-9  |2 gnd  |9 rswk-swf 
689 0 0 |a Advektion-Diffusionsgleichung  |0 (DE-588)4580212-9  |D s 
689 0 1 |a Reaktions-Diffusionsgleichung  |0 (DE-588)4323967-5  |D s 
689 0 2 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |8 1\p  |5 DE-604 
700 1 |a Verwer, Jan  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-662-09017-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027858833 

Datensatz im Suchindex

DE-BY-TUM_katkey 2070425
_version_ 1820684759892754432
any_adam_object
author Hundsdorfer, Willem
author_facet Hundsdorfer, Willem
author_role aut
author_sort Hundsdorfer, Willem
author_variant w h wh
building Verbundindex
bvnumber BV042423416
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879624530
(DE-599)BVBBV042423416
dewey-full 515.353
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515.353
dewey-search 515.353
dewey-sort 3515.353
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-09017-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03702nam a2200577zcb4500</leader><controlfield tag="001">BV042423416</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662090176</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-09017-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642057076</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05707-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-09017-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624530</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423416</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hundsdorfer, Willem</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations</subfield><subfield code="c">by Willem Hundsdorfer, Jan Verwer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 472 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Mathematics</subfield><subfield code="v">33</subfield><subfield code="x">0179-3632</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book describes numerical methods for partial differential equations (PDEs) coupling advection, diffusion and reaction terms, encompassing methods for hyperbolic, parabolic and stiff and nonstiff ordinary differential equations (ODEs). The emphasis lies on time-dependent transport-chemistry problems, describing e.g. the evolution of concentrations in environmental and biological applications. Along with the common topics of stability and convergence, much attention is paid on how to prevent spurious, negative concentrations and oscillations, both in space and time. Many of the theoretical aspects are illustrated by numerical experiments on models from biology, chemistry and physics. A unified approach is followed by emphasizing the method of lines or semi-discretization. In this regard this book differs substantially from more specialized textbooks which deal exclusively with either PDEs or ODEs. This book treats integration methods suitable for both classes of problems and thus is of interest to PDE researchers unfamiliar with advanced numerical ODE methods, as well as to ODE researchers unaware of the vast amount of interesting results on numerical PDEs. The first chapter provides a self-contained introduction to the field and can be used for an undergraduate course on the numerical solution of PDEs. The remaining four chapters are more specialized and of interest to researchers, practitioners and graduate students from numerical mathematics, scientific computing, computational physics and other computational sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ordinary Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Advektion-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4580212-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Advektion-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4580212-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Reaktions-Diffusionsgleichung</subfield><subfield code="0">(DE-588)4323967-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Verwer, Jan</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-09017-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858833</subfield></datafield></record></collection>
id DE-604.BV042423416
illustrated Not Illustrated
indexdate 2025-01-08T13:44:53Z
institution BVB
isbn 9783662090176
9783642057076
issn 0179-3632
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858833
oclc_num 879624530
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 472 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 2003
publishDateSearch 2003
publishDateSort 2003
publisher Springer Berlin Heidelberg
record_format marc
series2 Springer Series in Computational Mathematics
spellingShingle Hundsdorfer, Willem
Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
Mathematics
Differential Equations
Differential equations, partial
Numerical analysis
Partial Differential Equations
Ordinary Differential Equations
Numerical Analysis
Mathematik
Numerisches Verfahren (DE-588)4128130-5 gnd
Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd
Advektion-Diffusionsgleichung (DE-588)4580212-9 gnd
subject_GND (DE-588)4128130-5
(DE-588)4323967-5
(DE-588)4580212-9
title Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
title_auth Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
title_exact_search Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
title_full Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by Willem Hundsdorfer, Jan Verwer
title_fullStr Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by Willem Hundsdorfer, Jan Verwer
title_full_unstemmed Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations by Willem Hundsdorfer, Jan Verwer
title_short Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations
title_sort numerical solution of time dependent advection diffusion reaction equations
topic Mathematics
Differential Equations
Differential equations, partial
Numerical analysis
Partial Differential Equations
Ordinary Differential Equations
Numerical Analysis
Mathematik
Numerisches Verfahren (DE-588)4128130-5 gnd
Reaktions-Diffusionsgleichung (DE-588)4323967-5 gnd
Advektion-Diffusionsgleichung (DE-588)4580212-9 gnd
topic_facet Mathematics
Differential Equations
Differential equations, partial
Numerical analysis
Partial Differential Equations
Ordinary Differential Equations
Numerical Analysis
Mathematik
Numerisches Verfahren
Reaktions-Diffusionsgleichung
Advektion-Diffusionsgleichung
url https://doi.org/10.1007/978-3-662-09017-6
work_keys_str_mv AT hundsdorferwillem numericalsolutionoftimedependentadvectiondiffusionreactionequations
AT verwerjan numericalsolutionoftimedependentadvectiondiffusionreactionequations