Field Arithmetic

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Fried, Michael D. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1986
Schriftenreihe:Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics 11
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042423390
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1986 xx o|||| 00||| eng d
020 |a 9783662072165  |c Online  |9 978-3-662-07216-5 
020 |a 9783662072189  |c Print  |9 978-3-662-07218-9 
024 7 |a 10.1007/978-3-662-07216-5  |2 doi 
035 |a (OCoLC)864002567 
035 |a (DE-599)BVBBV042423390 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.3  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Fried, Michael D.  |e Verfasser  |4 aut 
245 1 0 |a Field Arithmetic  |c by Michael D. Fried, Moshe Jarden 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1986 
300 |a 1 Online-Ressource (XVII, 460 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics  |v 11  |x 0071-1136 
500 |a Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)? 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Field theory (Physics) 
650 4 |a Logic, Symbolic and mathematical 
650 4 |a Field Theory and Polynomials 
650 4 |a Mathematical Logic and Foundations 
650 4 |a Algebraic Geometry 
650 4 |a Mathematik 
650 0 7 |a Algebraische Zahlentheorie  |0 (DE-588)4001170-7  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraischer Körper  |0 (DE-588)4141852-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Proendliche Gruppe  |0 (DE-588)4132444-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Funktionenkörper  |0 (DE-588)4155688-4  |2 gnd  |9 rswk-swf 
650 0 7 |a Pseudoalgebraisch abgeschlossener Körper  |0 (DE-588)4132443-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraischer Zahlkörper  |0 (DE-588)4068537-8  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraischer Funktionenkörper  |0 (DE-588)4141850-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Absoluter Klassenkörper  |0 (DE-588)4132442-0  |2 gnd  |9 rswk-swf 
689 0 0 |a Pseudoalgebraisch abgeschlossener Körper  |0 (DE-588)4132443-2  |D s 
689 0 1 |a Absoluter Klassenkörper  |0 (DE-588)4132442-0  |D s 
689 0 2 |a Proendliche Gruppe  |0 (DE-588)4132444-4  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Algebraischer Zahlkörper  |0 (DE-588)4068537-8  |D s 
689 1 1 |a Pseudoalgebraisch abgeschlossener Körper  |0 (DE-588)4132443-2  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Algebraische Zahlentheorie  |0 (DE-588)4001170-7  |D s 
689 2 |8 3\p  |5 DE-604 
689 3 0 |a Algebraischer Funktionenkörper  |0 (DE-588)4141850-5  |D s 
689 3 |8 4\p  |5 DE-604 
689 4 0 |a Funktionenkörper  |0 (DE-588)4155688-4  |D s 
689 4 |8 5\p  |5 DE-604 
689 5 0 |a Algebraischer Körper  |0 (DE-588)4141852-9  |D s 
689 5 |8 6\p  |5 DE-604 
700 1 |a Jarden, Moshe  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-662-07216-5  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 5\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 6\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027858807 

Datensatz im Suchindex

DE-BY-TUM_katkey 2070399
_version_ 1820684760750489601
any_adam_object
author Fried, Michael D.
author_facet Fried, Michael D.
author_role aut
author_sort Fried, Michael D.
author_variant m d f md mdf
building Verbundindex
bvnumber BV042423390
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)864002567
(DE-599)BVBBV042423390
dewey-full 512.3
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.3
dewey-search 512.3
dewey-sort 3512.3
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-07216-5
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04818nam a2200829zcb4500</leader><controlfield tag="001">BV042423390</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1986 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662072165</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-07216-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662072189</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-07218-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-07216-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864002567</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423390</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.3</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fried, Michael D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Field Arithmetic</subfield><subfield code="c">by Michael D. Fried, Moshe Jarden</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1986</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVII, 460 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics</subfield><subfield code="v">11</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field theory (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Logic, Symbolic and mathematical</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Field Theory and Polynomials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical Logic and Foundations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Körper</subfield><subfield code="0">(DE-588)4141852-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Proendliche Gruppe</subfield><subfield code="0">(DE-588)4132444-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenkörper</subfield><subfield code="0">(DE-588)4155688-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudoalgebraisch abgeschlossener Körper</subfield><subfield code="0">(DE-588)4132443-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Zahlkörper</subfield><subfield code="0">(DE-588)4068537-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Funktionenkörper</subfield><subfield code="0">(DE-588)4141850-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Absoluter Klassenkörper</subfield><subfield code="0">(DE-588)4132442-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Pseudoalgebraisch abgeschlossener Körper</subfield><subfield code="0">(DE-588)4132443-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Absoluter Klassenkörper</subfield><subfield code="0">(DE-588)4132442-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Proendliche Gruppe</subfield><subfield code="0">(DE-588)4132444-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraischer Zahlkörper</subfield><subfield code="0">(DE-588)4068537-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Pseudoalgebraisch abgeschlossener Körper</subfield><subfield code="0">(DE-588)4132443-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Algebraische Zahlentheorie</subfield><subfield code="0">(DE-588)4001170-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Algebraischer Funktionenkörper</subfield><subfield code="0">(DE-588)4141850-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Funktionenkörper</subfield><subfield code="0">(DE-588)4155688-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Algebraischer Körper</subfield><subfield code="0">(DE-588)4141852-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jarden, Moshe</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-07216-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858807</subfield></datafield></record></collection>
id DE-604.BV042423390
illustrated Not Illustrated
indexdate 2025-01-08T13:44:53Z
institution BVB
isbn 9783662072165
9783662072189
issn 0071-1136
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858807
oclc_num 864002567
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XVII, 460 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1986
publishDateSearch 1986
publishDateSort 1986
publisher Springer Berlin Heidelberg
record_format marc
series2 Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics
spellingShingle Fried, Michael D.
Field Arithmetic
Mathematics
Geometry, algebraic
Field theory (Physics)
Logic, Symbolic and mathematical
Field Theory and Polynomials
Mathematical Logic and Foundations
Algebraic Geometry
Mathematik
Algebraische Zahlentheorie (DE-588)4001170-7 gnd
Algebraischer Körper (DE-588)4141852-9 gnd
Proendliche Gruppe (DE-588)4132444-4 gnd
Funktionenkörper (DE-588)4155688-4 gnd
Pseudoalgebraisch abgeschlossener Körper (DE-588)4132443-2 gnd
Algebraischer Zahlkörper (DE-588)4068537-8 gnd
Algebraischer Funktionenkörper (DE-588)4141850-5 gnd
Absoluter Klassenkörper (DE-588)4132442-0 gnd
subject_GND (DE-588)4001170-7
(DE-588)4141852-9
(DE-588)4132444-4
(DE-588)4155688-4
(DE-588)4132443-2
(DE-588)4068537-8
(DE-588)4141850-5
(DE-588)4132442-0
title Field Arithmetic
title_auth Field Arithmetic
title_exact_search Field Arithmetic
title_full Field Arithmetic by Michael D. Fried, Moshe Jarden
title_fullStr Field Arithmetic by Michael D. Fried, Moshe Jarden
title_full_unstemmed Field Arithmetic by Michael D. Fried, Moshe Jarden
title_short Field Arithmetic
title_sort field arithmetic
topic Mathematics
Geometry, algebraic
Field theory (Physics)
Logic, Symbolic and mathematical
Field Theory and Polynomials
Mathematical Logic and Foundations
Algebraic Geometry
Mathematik
Algebraische Zahlentheorie (DE-588)4001170-7 gnd
Algebraischer Körper (DE-588)4141852-9 gnd
Proendliche Gruppe (DE-588)4132444-4 gnd
Funktionenkörper (DE-588)4155688-4 gnd
Pseudoalgebraisch abgeschlossener Körper (DE-588)4132443-2 gnd
Algebraischer Zahlkörper (DE-588)4068537-8 gnd
Algebraischer Funktionenkörper (DE-588)4141850-5 gnd
Absoluter Klassenkörper (DE-588)4132442-0 gnd
topic_facet Mathematics
Geometry, algebraic
Field theory (Physics)
Logic, Symbolic and mathematical
Field Theory and Polynomials
Mathematical Logic and Foundations
Algebraic Geometry
Mathematik
Algebraische Zahlentheorie
Algebraischer Körper
Proendliche Gruppe
Funktionenkörper
Pseudoalgebraisch abgeschlossener Körper
Algebraischer Zahlkörper
Algebraischer Funktionenkörper
Absoluter Klassenkörper
url https://doi.org/10.1007/978-3-662-07216-5
work_keys_str_mv AT friedmichaeld fieldarithmetic
AT jardenmoshe fieldarithmetic