Dynamical Systems IV Symplectic Geometry and its Applications

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Arnol’d, V. I. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1990
Schriftenreihe:Encyclopaedia of Mathematical Sciences 4
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042423384
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1990 xx o|||| 00||| eng d
020 |a 9783662067932  |c Online  |9 978-3-662-06793-2 
020 |a 9783662067956  |c Print  |9 978-3-662-06795-6 
024 7 |a 10.1007/978-3-662-06793-2  |2 doi 
035 |a (OCoLC)860185992 
035 |a (DE-599)BVBBV042423384 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 515  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Arnol’d, V. I.  |e Verfasser  |4 aut 
245 1 0 |a Dynamical Systems IV  |b Symplectic Geometry and its Applications  |c edited by V. I. Arnol’d, S. P. Novikov 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1990 
300 |a 1 Online-Ressource (VII, 286 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Encyclopaedia of Mathematical Sciences  |v 4  |x 0938-0396 
500 |a This book takes a snapshot of the mathematical foundations of classical and quantum mechanics from a contemporary mathematical viewpoint. It covers a number of important recent developments in dynamical systems and mathematical physics and places them in the framework of the more classical approaches; the presentation is enhanced by many illustrative examples concerning topics which have been of especial interest to workers in the field, and by sketches of the proofs of the major results. The comprehensive bibliographies are designed to permit the interested reader to retrace the major stages in the development of the field if he wishes. Not so much a detailed textbook for plodding students, this volume, like the others in the series, is intended to lead researchers in other fields and advanced students quickly to an understanding of the 'state of the art' in this area of mathematics. As such it will serve both as a basic reference work on important areas of mathematical physics as they stand today, and as a good starting point for further, more detailed study for people new to this field 
650 4 |a Mathematics 
650 4 |a Topological Groups 
650 4 |a Global analysis (Mathematics) 
650 4 |a Global differential geometry 
650 4 |a Topology 
650 4 |a Analysis 
650 4 |a Theoretical, Mathematical and Computational Physics 
650 4 |a Differential Geometry 
650 4 |a Topological Groups, Lie Groups 
650 4 |a Mathematik 
700 1 |a Novikov, S. P.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-662-06793-2  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027858801 

Datensatz im Suchindex

DE-BY-TUM_katkey 2070393
_version_ 1820684760603688961
any_adam_object
author Arnol’d, V. I.
author_facet Arnol’d, V. I.
author_role aut
author_sort Arnol’d, V. I.
author_variant v i a vi via
building Verbundindex
bvnumber BV042423384
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)860185992
(DE-599)BVBBV042423384
dewey-full 515
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 515 - Analysis
dewey-raw 515
dewey-search 515
dewey-sort 3515
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-06793-2
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02778nam a2200505zcb4500</leader><controlfield tag="001">BV042423384</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067932</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06793-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067956</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-06795-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06793-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)860185992</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423384</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnol’d, V. I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Dynamical Systems IV</subfield><subfield code="b">Symplectic Geometry and its Applications</subfield><subfield code="c">edited by V. I. Arnol’d, S. P. Novikov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 286 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">4</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book takes a snapshot of the mathematical foundations of classical and quantum mechanics from a contemporary mathematical viewpoint. It covers a number of important recent developments in dynamical systems and mathematical physics and places them in the framework of the more classical approaches; the presentation is enhanced by many illustrative examples concerning topics which have been of especial interest to workers in the field, and by sketches of the proofs of the major results. The comprehensive bibliographies are designed to permit the interested reader to retrace the major stages in the development of the field if he wishes. Not so much a detailed textbook for plodding students, this volume, like the others in the series, is intended to lead researchers in other fields and advanced students quickly to an understanding of the 'state of the art' in this area of mathematics. As such it will serve both as a basic reference work on important areas of mathematical physics as they stand today, and as a good starting point for further, more detailed study for people new to this field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Novikov, S. P.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06793-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858801</subfield></datafield></record></collection>
id DE-604.BV042423384
illustrated Not Illustrated
indexdate 2025-01-08T13:44:53Z
institution BVB
isbn 9783662067932
9783662067956
issn 0938-0396
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858801
oclc_num 860185992
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VII, 286 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1990
publishDateSearch 1990
publishDateSort 1990
publisher Springer Berlin Heidelberg
record_format marc
series2 Encyclopaedia of Mathematical Sciences
spellingShingle Arnol’d, V. I.
Dynamical Systems IV Symplectic Geometry and its Applications
Mathematics
Topological Groups
Global analysis (Mathematics)
Global differential geometry
Topology
Analysis
Theoretical, Mathematical and Computational Physics
Differential Geometry
Topological Groups, Lie Groups
Mathematik
title Dynamical Systems IV Symplectic Geometry and its Applications
title_auth Dynamical Systems IV Symplectic Geometry and its Applications
title_exact_search Dynamical Systems IV Symplectic Geometry and its Applications
title_full Dynamical Systems IV Symplectic Geometry and its Applications edited by V. I. Arnol’d, S. P. Novikov
title_fullStr Dynamical Systems IV Symplectic Geometry and its Applications edited by V. I. Arnol’d, S. P. Novikov
title_full_unstemmed Dynamical Systems IV Symplectic Geometry and its Applications edited by V. I. Arnol’d, S. P. Novikov
title_short Dynamical Systems IV
title_sort dynamical systems iv symplectic geometry and its applications
title_sub Symplectic Geometry and its Applications
topic Mathematics
Topological Groups
Global analysis (Mathematics)
Global differential geometry
Topology
Analysis
Theoretical, Mathematical and Computational Physics
Differential Geometry
Topological Groups, Lie Groups
Mathematik
topic_facet Mathematics
Topological Groups
Global analysis (Mathematics)
Global differential geometry
Topology
Analysis
Theoretical, Mathematical and Computational Physics
Differential Geometry
Topological Groups, Lie Groups
Mathematik
url https://doi.org/10.1007/978-3-662-06793-2
work_keys_str_mv AT arnoldvi dynamicalsystemsivsymplecticgeometryanditsapplications
AT novikovsp dynamicalsystemsivsymplecticgeometryanditsapplications