Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: You-lan, Zhu (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1988
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zc 4500
001 BV042423379
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1988 |||| o||u| ||||||eng d
020 |a 9783662067079  |c Online  |9 978-3-662-06707-9 
020 |a 9783662067093  |c Print  |9 978-3-662-06709-3 
024 7 |a 10.1007/978-3-662-06707-9  |2 doi 
035 |a (OCoLC)1184490183 
035 |a (DE-599)BVBBV042423379 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 518  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a You-lan, Zhu  |e Verfasser  |4 aut 
245 1 0 |a Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies  |c by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1988 
300 |a 1 Online-Ressource (VIII, 602 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
500 |a Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics 
650 4 |a Mathematics 
650 4 |a Chemistry / Mathematics 
650 4 |a Global analysis (Mathematics) 
650 4 |a Numerical analysis 
650 4 |a Engineering 
650 4 |a Numerical Analysis 
650 4 |a Analysis 
650 4 |a Theoretical, Mathematical and Computational Physics 
650 4 |a Math. Applications in Chemistry 
650 4 |a Computational Intelligence 
650 4 |a Chemie 
650 4 |a Ingenieurwissenschaften 
650 4 |a Mathematik 
650 0 7 |a Hyperbolische Differentialgleichung  |0 (DE-588)4131213-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Anfangsrandwertproblem  |0 (DE-588)4001990-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Überschallströmung  |0 (DE-588)4186626-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Anfangswertproblem  |0 (DE-588)4001991-3  |2 gnd  |9 rswk-swf 
650 0 7 |a Differenzengleichung  |0 (DE-588)4012264-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Hyperbolisches System  |0 (DE-588)4191897-6  |2 gnd  |9 rswk-swf 
650 0 7 |a Differenzenverfahren  |0 (DE-588)4134362-1  |2 gnd  |9 rswk-swf 
650 0 7 |a Randwertproblem  |0 (DE-588)4048395-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |2 gnd  |9 rswk-swf 
689 0 0 |a Hyperbolische Differentialgleichung  |0 (DE-588)4131213-2  |D s 
689 0 1 |a Anfangsrandwertproblem  |0 (DE-588)4001990-1  |D s 
689 0 2 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Hyperbolisches System  |0 (DE-588)4191897-6  |D s 
689 1 1 |a Anfangsrandwertproblem  |0 (DE-588)4001990-1  |D s 
689 1 2 |a Numerisches Verfahren  |0 (DE-588)4128130-5  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Anfangsrandwertproblem  |0 (DE-588)4001990-1  |D s 
689 2 1 |a Differenzenverfahren  |0 (DE-588)4134362-1  |D s 
689 2 |8 3\p  |5 DE-604 
689 3 0 |a Differenzengleichung  |0 (DE-588)4012264-5  |D s 
689 3 |8 4\p  |5 DE-604 
689 4 0 |a Anfangswertproblem  |0 (DE-588)4001991-3  |D s 
689 4 |8 5\p  |5 DE-604 
689 5 0 |a Randwertproblem  |0 (DE-588)4048395-2  |D s 
689 5 |8 6\p  |5 DE-604 
689 6 0 |a Überschallströmung  |0 (DE-588)4186626-5  |D s 
689 6 |8 7\p  |5 DE-604 
700 1 |a Bing-mu, Chen  |e Sonstige  |4 oth 
700 1 |a Xi-chang, Zhong  |e Sonstige  |4 oth 
700 1 |a Zuo-min, Zhang  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-662-06707-9  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027858796 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 4\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 5\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 6\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 7\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2070388
_version_ 1816714050433712128
any_adam_object
author You-lan, Zhu
author_facet You-lan, Zhu
author_role aut
author_sort You-lan, Zhu
author_variant z y l zyl
building Verbundindex
bvnumber BV042423379
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184490183
(DE-599)BVBBV042423379
dewey-full 518
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 518 - Numerical analysis
dewey-raw 518
dewey-search 518
dewey-sort 3518
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-06707-9
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05107nmm a2200961zc 4500</leader><controlfield tag="001">BV042423379</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067079</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06707-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067093</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-06709-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06707-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184490183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423379</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">You-lan, Zhu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies</subfield><subfield code="c">by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 602 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math. Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überschallströmung</subfield><subfield code="0">(DE-588)4186626-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Überschallströmung</subfield><subfield code="0">(DE-588)4186626-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bing-mu, Chen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi-chang, Zhong</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zuo-min, Zhang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06707-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858796</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042423379
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9783662067079
9783662067093
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858796
oclc_num 1184490183
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VIII, 602 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1988
publishDateSearch 1988
publishDateSort 1988
publisher Springer Berlin Heidelberg
record_format marc
spellingShingle You-lan, Zhu
Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies
Mathematics
Chemistry / Mathematics
Global analysis (Mathematics)
Numerical analysis
Engineering
Numerical Analysis
Analysis
Theoretical, Mathematical and Computational Physics
Math. Applications in Chemistry
Computational Intelligence
Chemie
Ingenieurwissenschaften
Mathematik
Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd
Anfangsrandwertproblem (DE-588)4001990-1 gnd
Überschallströmung (DE-588)4186626-5 gnd
Anfangswertproblem (DE-588)4001991-3 gnd
Differenzengleichung (DE-588)4012264-5 gnd
Hyperbolisches System (DE-588)4191897-6 gnd
Differenzenverfahren (DE-588)4134362-1 gnd
Randwertproblem (DE-588)4048395-2 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
subject_GND (DE-588)4131213-2
(DE-588)4001990-1
(DE-588)4186626-5
(DE-588)4001991-3
(DE-588)4012264-5
(DE-588)4191897-6
(DE-588)4134362-1
(DE-588)4048395-2
(DE-588)4128130-5
title Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies
title_auth Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies
title_exact_search Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies
title_full Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min
title_fullStr Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min
title_full_unstemmed Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min
title_short Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies
title_sort difference methods for initial boundary value problems and flow around bodies
topic Mathematics
Chemistry / Mathematics
Global analysis (Mathematics)
Numerical analysis
Engineering
Numerical Analysis
Analysis
Theoretical, Mathematical and Computational Physics
Math. Applications in Chemistry
Computational Intelligence
Chemie
Ingenieurwissenschaften
Mathematik
Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd
Anfangsrandwertproblem (DE-588)4001990-1 gnd
Überschallströmung (DE-588)4186626-5 gnd
Anfangswertproblem (DE-588)4001991-3 gnd
Differenzengleichung (DE-588)4012264-5 gnd
Hyperbolisches System (DE-588)4191897-6 gnd
Differenzenverfahren (DE-588)4134362-1 gnd
Randwertproblem (DE-588)4048395-2 gnd
Numerisches Verfahren (DE-588)4128130-5 gnd
topic_facet Mathematics
Chemistry / Mathematics
Global analysis (Mathematics)
Numerical analysis
Engineering
Numerical Analysis
Analysis
Theoretical, Mathematical and Computational Physics
Math. Applications in Chemistry
Computational Intelligence
Chemie
Ingenieurwissenschaften
Mathematik
Hyperbolische Differentialgleichung
Anfangsrandwertproblem
Überschallströmung
Anfangswertproblem
Differenzengleichung
Hyperbolisches System
Differenzenverfahren
Randwertproblem
Numerisches Verfahren
url https://doi.org/10.1007/978-3-662-06707-9
work_keys_str_mv AT youlanzhu differencemethodsforinitialboundaryvalueproblemsandflowaroundbodies
AT bingmuchen differencemethodsforinitialboundaryvalueproblemsandflowaroundbodies
AT xichangzhong differencemethodsforinitialboundaryvalueproblemsandflowaroundbodies
AT zuominzhang differencemethodsforinitialboundaryvalueproblemsandflowaroundbodies