Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1988
|
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042423379 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1988 |||| o||u| ||||||eng d | ||
020 | |a 9783662067079 |c Online |9 978-3-662-06707-9 | ||
020 | |a 9783662067093 |c Print |9 978-3-662-06709-3 | ||
024 | 7 | |a 10.1007/978-3-662-06707-9 |2 doi | |
035 | |a (OCoLC)1184490183 | ||
035 | |a (DE-599)BVBBV042423379 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a You-lan, Zhu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies |c by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1988 | |
300 | |a 1 Online-Ressource (VIII, 602 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Chemistry / Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Engineering | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Math. Applications in Chemistry | |
650 | 4 | |a Computational Intelligence | |
650 | 4 | |a Chemie | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Überschallströmung |0 (DE-588)4186626-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Anfangswertproblem |0 (DE-588)4001991-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzengleichung |0 (DE-588)4012264-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hyperbolisches System |0 (DE-588)4191897-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differenzenverfahren |0 (DE-588)4134362-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 0 | 1 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Hyperbolisches System |0 (DE-588)4191897-6 |D s |
689 | 1 | 1 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 1 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Anfangsrandwertproblem |0 (DE-588)4001990-1 |D s |
689 | 2 | 1 | |a Differenzenverfahren |0 (DE-588)4134362-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Differenzengleichung |0 (DE-588)4012264-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Anfangswertproblem |0 (DE-588)4001991-3 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
689 | 6 | 0 | |a Überschallströmung |0 (DE-588)4186626-5 |D s |
689 | 6 | |8 7\p |5 DE-604 | |
700 | 1 | |a Bing-mu, Chen |e Sonstige |4 oth | |
700 | 1 | |a Xi-chang, Zhong |e Sonstige |4 oth | |
700 | 1 | |a Zuo-min, Zhang |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-662-06707-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858796 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2070388 |
---|---|
_version_ | 1816714050433712128 |
any_adam_object | |
author | You-lan, Zhu |
author_facet | You-lan, Zhu |
author_role | aut |
author_sort | You-lan, Zhu |
author_variant | z y l zyl |
building | Verbundindex |
bvnumber | BV042423379 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184490183 (DE-599)BVBBV042423379 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-662-06707-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>05107nmm a2200961zc 4500</leader><controlfield tag="001">BV042423379</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1988 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067079</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-06707-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662067093</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-662-06709-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-06707-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184490183</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423379</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">You-lan, Zhu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies</subfield><subfield code="c">by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1988</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 602 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Since the appearance of computers, numerical methods for discontinuous solutions of quasi-linear hyperbolic systems of partial differential equations have been among the most important research subjects in numerical analysis. The authors have developed a new difference method (named the singularity-separating method) for quasi-linear hyperbolic systems of partial differential equations. Its most important feature is that it possesses a high accuracy even for problems with singularities such as schocks, contact discontinuities, rarefaction waves and detonations. Besides the thorough description of the method itself, its mathematical foundation (stability-convergence theory of difference schemes for initial-boundary-value hyperbolic problems) and its application to supersonic flow around bodies are discussed. Further, the method of lines and its application to blunt body problems and conical flow problems are described in detail. This book should soon be an important working basis for both graduate students and researchers in the field of partial differential equations as well as in mathematical physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Math. Applications in Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Intelligence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemie</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Überschallströmung</subfield><subfield code="0">(DE-588)4186626-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Hyperbolisches System</subfield><subfield code="0">(DE-588)4191897-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Anfangsrandwertproblem</subfield><subfield code="0">(DE-588)4001990-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Differenzenverfahren</subfield><subfield code="0">(DE-588)4134362-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Differenzengleichung</subfield><subfield code="0">(DE-588)4012264-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Anfangswertproblem</subfield><subfield code="0">(DE-588)4001991-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Überschallströmung</subfield><subfield code="0">(DE-588)4186626-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bing-mu, Chen</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xi-chang, Zhong</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zuo-min, Zhang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-06707-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858796</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042423379 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T17:51:13Z |
institution | BVB |
isbn | 9783662067079 9783662067093 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858796 |
oclc_num | 1184490183 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 602 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1988 |
publishDateSearch | 1988 |
publishDateSort | 1988 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spellingShingle | You-lan, Zhu Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies Mathematics Chemistry / Mathematics Global analysis (Mathematics) Numerical analysis Engineering Numerical Analysis Analysis Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Chemie Ingenieurwissenschaften Mathematik Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd Überschallströmung (DE-588)4186626-5 gnd Anfangswertproblem (DE-588)4001991-3 gnd Differenzengleichung (DE-588)4012264-5 gnd Hyperbolisches System (DE-588)4191897-6 gnd Differenzenverfahren (DE-588)4134362-1 gnd Randwertproblem (DE-588)4048395-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4131213-2 (DE-588)4001990-1 (DE-588)4186626-5 (DE-588)4001991-3 (DE-588)4012264-5 (DE-588)4191897-6 (DE-588)4134362-1 (DE-588)4048395-2 (DE-588)4128130-5 |
title | Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies |
title_auth | Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies |
title_exact_search | Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies |
title_full | Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min |
title_fullStr | Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min |
title_full_unstemmed | Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies by Zhu You-lan, Chen Bing-mu, Zhong Xi-chang, Zhang Zuo-min |
title_short | Difference Methods for Initial-Boundary-Value Problems and Flow Around Bodies |
title_sort | difference methods for initial boundary value problems and flow around bodies |
topic | Mathematics Chemistry / Mathematics Global analysis (Mathematics) Numerical analysis Engineering Numerical Analysis Analysis Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Chemie Ingenieurwissenschaften Mathematik Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Anfangsrandwertproblem (DE-588)4001990-1 gnd Überschallströmung (DE-588)4186626-5 gnd Anfangswertproblem (DE-588)4001991-3 gnd Differenzengleichung (DE-588)4012264-5 gnd Hyperbolisches System (DE-588)4191897-6 gnd Differenzenverfahren (DE-588)4134362-1 gnd Randwertproblem (DE-588)4048395-2 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Mathematics Chemistry / Mathematics Global analysis (Mathematics) Numerical analysis Engineering Numerical Analysis Analysis Theoretical, Mathematical and Computational Physics Math. Applications in Chemistry Computational Intelligence Chemie Ingenieurwissenschaften Mathematik Hyperbolische Differentialgleichung Anfangsrandwertproblem Überschallströmung Anfangswertproblem Differenzengleichung Hyperbolisches System Differenzenverfahren Randwertproblem Numerisches Verfahren |
url | https://doi.org/10.1007/978-3-662-06707-9 |
work_keys_str_mv | AT youlanzhu differencemethodsforinitialboundaryvalueproblemsandflowaroundbodies AT bingmuchen differencemethodsforinitialboundaryvalueproblemsandflowaroundbodies AT xichangzhong differencemethodsforinitialboundaryvalueproblemsandflowaroundbodies AT zuominzhang differencemethodsforinitialboundaryvalueproblemsandflowaroundbodies |