Joins and Intersections

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Flenner, Hubert (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1999
Schriftenreihe:Springer Monographs in Mathematics
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zc 4500
001 BV042423279
003 DE-604
005 20171212
007 cr|uuu---uuuuu
008 150317s1999 xx o|||| 00||| eng d
020 |a 9783662038178  |c Online  |9 978-3-662-03817-8 
020 |a 9783642085628  |c Print  |9 978-3-642-08562-8 
024 7 |a 10.1007/978-3-662-03817-8  |2 doi 
035 |a (OCoLC)879623458 
035 |a (DE-599)BVBBV042423279 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 516.35  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Flenner, Hubert  |e Verfasser  |4 aut 
245 1 0 |a Joins and Intersections  |c by Hubert Flenner, Liam O'Carroll, Wolfgang Vogel 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1999 
300 |a 1 Online-Ressource (VI, 301 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Springer Monographs in Mathematics  |x 1439-7382 
500 |a Dedicated to the memory of Wolfgang Classical Intersection Theory (see for example Wei! [Wei]) treats the case of proper intersections, where geometrical objects (usually subvarieties of a non­singular variety) intersect with the expected dimension. In 1984, two books appeared which surveyed and developed work by the individual authors, co­workers and others on a refined version of Intersection Theory, treating the case of possibly improper intersections, where the intersection could have excess dimension. The first, by W. Fulton [Full] (recently revised in updated form), used a geometrical theory of deformation to the normal cone, more specifically, deformation to the normal bundle followed by moving the zero section to make the intersection proper; this theory was due to the author together with R. MacPherson and worked generally for intersections on algebraic manifolds. It represents nowadays the standard approach to Intersection Theory. The second, by W. Vogel [Vogl], employed an algebraic approach to intersections; although restricted to intersections in projective space it produced an intersection cycle by a simple and natural algorithm, thus leading to a Bezout theorem for improper intersections. It was developed together with J. Stiickrad and involved a refined version of the classical technique of reduction to the diagonal: here one starts with the join variety and intersects with successive hyperplanes in general position, laying aside components which fall into the diagonal and intersecting the residual scheme with the next hyperplane; since all the hyperplanes intersect in the diagonal, the process terminates 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Geometry 
650 4 |a Algebraic Geometry 
650 4 |a Mathematik 
650 0 7 |a Schnitttheorie  |0 (DE-588)4179890-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |2 gnd  |9 rswk-swf 
689 0 0 |a Algebraische Geometrie  |0 (DE-588)4001161-6  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Schnitttheorie  |0 (DE-588)4179890-9  |D s 
689 1 |8 2\p  |5 DE-604 
700 1 |a O'Carroll, Liam  |e Sonstige  |4 oth 
700 1 |a Vogel, Wolfgang  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-662-03817-8  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027858696 

Datensatz im Suchindex

DE-BY-TUM_katkey 2070288
_version_ 1820684752642899968
any_adam_object
author Flenner, Hubert
author_facet Flenner, Hubert
author_role aut
author_sort Flenner, Hubert
author_variant h f hf
building Verbundindex
bvnumber BV042423279
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879623458
(DE-599)BVBBV042423279
dewey-full 516.35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.35
dewey-search 516.35
dewey-sort 3516.35
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-03817-8
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03582nam a2200553zc 4500</leader><controlfield tag="001">BV042423279</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171212 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662038178</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-03817-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642085628</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08562-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-03817-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623458</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423279</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Flenner, Hubert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Joins and Intersections</subfield><subfield code="c">by Hubert Flenner, Liam O'Carroll, Wolfgang Vogel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VI, 301 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Monographs in Mathematics</subfield><subfield code="x">1439-7382</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Dedicated to the memory of Wolfgang Classical Intersection Theory (see for example Wei! [Wei]) treats the case of proper intersections, where geometrical objects (usually subvarieties of a non­singular variety) intersect with the expected dimension. In 1984, two books appeared which surveyed and developed work by the individual authors, co­workers and others on a refined version of Intersection Theory, treating the case of possibly improper intersections, where the intersection could have excess dimension. The first, by W. Fulton [Full] (recently revised in updated form), used a geometrical theory of deformation to the normal cone, more specifically, deformation to the normal bundle followed by moving the zero section to make the intersection proper; this theory was due to the author together with R. MacPherson and worked generally for intersections on algebraic manifolds. It represents nowadays the standard approach to Intersection Theory. The second, by W. Vogel [Vogl], employed an algebraic approach to intersections; although restricted to intersections in projective space it produced an intersection cycle by a simple and natural algorithm, thus leading to a Bezout theorem for improper intersections. It was developed together with J. Stiickrad and involved a refined version of the classical technique of reduction to the diagonal: here one starts with the join variety and intersects with successive hyperplanes in general position, laying aside components which fall into the diagonal and intersecting the residual scheme with the next hyperplane; since all the hyperplanes intersect in the diagonal, the process terminates</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Schnitttheorie</subfield><subfield code="0">(DE-588)4179890-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Schnitttheorie</subfield><subfield code="0">(DE-588)4179890-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">O'Carroll, Liam</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vogel, Wolfgang</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-03817-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858696</subfield></datafield></record></collection>
id DE-604.BV042423279
illustrated Not Illustrated
indexdate 2025-01-08T13:44:46Z
institution BVB
isbn 9783662038178
9783642085628
issn 1439-7382
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858696
oclc_num 879623458
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VI, 301 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Springer Berlin Heidelberg
record_format marc
series2 Springer Monographs in Mathematics
spellingShingle Flenner, Hubert
Joins and Intersections
Mathematics
Geometry, algebraic
Geometry
Algebraic Geometry
Mathematik
Schnitttheorie (DE-588)4179890-9 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
subject_GND (DE-588)4179890-9
(DE-588)4001161-6
title Joins and Intersections
title_auth Joins and Intersections
title_exact_search Joins and Intersections
title_full Joins and Intersections by Hubert Flenner, Liam O'Carroll, Wolfgang Vogel
title_fullStr Joins and Intersections by Hubert Flenner, Liam O'Carroll, Wolfgang Vogel
title_full_unstemmed Joins and Intersections by Hubert Flenner, Liam O'Carroll, Wolfgang Vogel
title_short Joins and Intersections
title_sort joins and intersections
topic Mathematics
Geometry, algebraic
Geometry
Algebraic Geometry
Mathematik
Schnitttheorie (DE-588)4179890-9 gnd
Algebraische Geometrie (DE-588)4001161-6 gnd
topic_facet Mathematics
Geometry, algebraic
Geometry
Algebraic Geometry
Mathematik
Schnitttheorie
Algebraische Geometrie
url https://doi.org/10.1007/978-3-662-03817-8
work_keys_str_mv AT flennerhubert joinsandintersections
AT ocarrollliam joinsandintersections
AT vogelwolfgang joinsandintersections