Geometry III Theory of Surfaces

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Burago, Yu. D. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1992
Schriftenreihe:Encyclopaedia of Mathematical Sciences 48
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042423210
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1992 xx o|||| 00||| eng d
020 |a 9783662027516  |c Online  |9 978-3-662-02751-6 
020 |a 9783642081026  |c Print  |9 978-3-642-08102-6 
024 7 |a 10.1007/978-3-662-02751-6  |2 doi 
035 |a (OCoLC)863947956 
035 |a (DE-599)BVBBV042423210 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 516.36  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Burago, Yu. D.  |e Verfasser  |4 aut 
245 1 0 |a Geometry III  |b Theory of Surfaces  |c edited by Yu. D. Burago, V. A. Zalgaller 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1992 
300 |a 1 Online-Ressource (VIII, 258 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Encyclopaedia of Mathematical Sciences  |v 48  |x 0938-0396 
500 |a The original version of this article was written more than fiveyears ago with S. Z. Shefel',a profound and original mathematician who died in 1984. Sincethen the geometry of surfaces has continued to be enriched with ideas and results. This has required changes and additions, but has not influenced the character of the article, the design ofwhich originated with Shefel'. Without knowing to what extent Shefel' would have approved the changes, I should nevertheless like to dedicate this article to his memory. (Yu. D. Burago) We are trying to state the qualitative questions of the theory of surfaces in Euclidean spaces in the form in which they appear to the authors at present. This description does not entirely correspond to the historical development of the subject. The theory of surfaces was developed in the first place mainly as the 3 theory of surfaces in three-dimensional Euclidean space E ; however, it makes sense to begin by considering surfaces F in Euclidean spaces of any dimension n~ 3. This approach enables us, in particular, to put in a new light some 3 unsolved problems of this developed (and in the case of surfaces in E fairly complete) theory, and in many cases to refer to the connections with the present stage ofdevelopment of the theory of multidimensional submanifolds. The leading question of the article is the problem of the connection between classes of metrics and classes of surfaces in En 
650 4 |a Mathematics 
650 4 |a Global differential geometry 
650 4 |a Differential Geometry 
650 4 |a Mathematik 
700 1 |a Zalgaller, V. A.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-662-02751-6  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027858627 

Datensatz im Suchindex

_version_ 1819294257533419520
any_adam_object
author Burago, Yu. D.
author_facet Burago, Yu. D.
author_role aut
author_sort Burago, Yu. D.
author_variant y d b yd ydb
building Verbundindex
bvnumber BV042423210
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863947956
(DE-599)BVBBV042423210
dewey-full 516.36
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.36
dewey-search 516.36
dewey-sort 3516.36
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-662-02751-6
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02833nam a2200433zcb4500</leader><controlfield tag="001">BV042423210</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783662027516</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-662-02751-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642081026</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-08102-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-662-02751-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863947956</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423210</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Burago, Yu. D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry III</subfield><subfield code="b">Theory of Surfaces</subfield><subfield code="c">edited by Yu. D. Burago, V. A. Zalgaller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 258 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">48</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The original version of this article was written more than fiveyears ago with S. Z. Shefel',a profound and original mathematician who died in 1984. Sincethen the geometry of surfaces has continued to be enriched with ideas and results. This has required changes and additions, but has not influenced the character of the article, the design ofwhich originated with Shefel'. Without knowing to what extent Shefel' would have approved the changes, I should nevertheless like to dedicate this article to his memory. (Yu. D. Burago) We are trying to state the qualitative questions of the theory of surfaces in Euclidean spaces in the form in which they appear to the authors at present. This description does not entirely correspond to the historical development of the subject. The theory of surfaces was developed in the first place mainly as the 3 theory of surfaces in three-dimensional Euclidean space E ; however, it makes sense to begin by considering surfaces F in Euclidean spaces of any dimension n~ 3. This approach enables us, in particular, to put in a new light some 3 unsolved problems of this developed (and in the case of surfaces in E fairly complete) theory, and in many cases to refer to the connections with the present stage ofdevelopment of the theory of multidimensional submanifolds. The leading question of the article is the problem of the connection between classes of metrics and classes of surfaces in En</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zalgaller, V. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-662-02751-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858627</subfield></datafield></record></collection>
id DE-604.BV042423210
illustrated Not Illustrated
indexdate 2024-12-24T04:23:27Z
institution BVB
isbn 9783662027516
9783642081026
issn 0938-0396
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858627
oclc_num 863947956
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VIII, 258 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1992
publishDateSearch 1992
publishDateSort 1992
publisher Springer Berlin Heidelberg
record_format marc
series2 Encyclopaedia of Mathematical Sciences
spelling Burago, Yu. D. Verfasser aut
Geometry III Theory of Surfaces edited by Yu. D. Burago, V. A. Zalgaller
Berlin, Heidelberg Springer Berlin Heidelberg 1992
1 Online-Ressource (VIII, 258 p)
txt rdacontent
c rdamedia
cr rdacarrier
Encyclopaedia of Mathematical Sciences 48 0938-0396
The original version of this article was written more than fiveyears ago with S. Z. Shefel',a profound and original mathematician who died in 1984. Sincethen the geometry of surfaces has continued to be enriched with ideas and results. This has required changes and additions, but has not influenced the character of the article, the design ofwhich originated with Shefel'. Without knowing to what extent Shefel' would have approved the changes, I should nevertheless like to dedicate this article to his memory. (Yu. D. Burago) We are trying to state the qualitative questions of the theory of surfaces in Euclidean spaces in the form in which they appear to the authors at present. This description does not entirely correspond to the historical development of the subject. The theory of surfaces was developed in the first place mainly as the 3 theory of surfaces in three-dimensional Euclidean space E ; however, it makes sense to begin by considering surfaces F in Euclidean spaces of any dimension n~ 3. This approach enables us, in particular, to put in a new light some 3 unsolved problems of this developed (and in the case of surfaces in E fairly complete) theory, and in many cases to refer to the connections with the present stage ofdevelopment of the theory of multidimensional submanifolds. The leading question of the article is the problem of the connection between classes of metrics and classes of surfaces in En
Mathematics
Global differential geometry
Differential Geometry
Mathematik
Zalgaller, V. A. Sonstige oth
https://doi.org/10.1007/978-3-662-02751-6 Verlag Volltext
spellingShingle Burago, Yu. D.
Geometry III Theory of Surfaces
Mathematics
Global differential geometry
Differential Geometry
Mathematik
title Geometry III Theory of Surfaces
title_auth Geometry III Theory of Surfaces
title_exact_search Geometry III Theory of Surfaces
title_full Geometry III Theory of Surfaces edited by Yu. D. Burago, V. A. Zalgaller
title_fullStr Geometry III Theory of Surfaces edited by Yu. D. Burago, V. A. Zalgaller
title_full_unstemmed Geometry III Theory of Surfaces edited by Yu. D. Burago, V. A. Zalgaller
title_short Geometry III
title_sort geometry iii theory of surfaces
title_sub Theory of Surfaces
topic Mathematics
Global differential geometry
Differential Geometry
Mathematik
topic_facet Mathematics
Global differential geometry
Differential Geometry
Mathematik
url https://doi.org/10.1007/978-3-662-02751-6
work_keys_str_mv AT buragoyud geometryiiitheoryofsurfaces
AT zalgallerva geometryiiitheoryofsurfaces