Plane Elastic Systems
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1968
|
Ausgabe: | Second Edition, Corrected |
Schriftenreihe: | Ergebnisse der Angewandten Mathematik
6 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042423082 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1968 xx o|||| 00||| eng d | ||
020 | |a 9783642878701 |c Online |9 978-3-642-87870-1 | ||
020 | |a 9783540040927 |c Print |9 978-3-540-04092-7 | ||
024 | 7 | |a 10.1007/978-3-642-87870-1 |2 doi | |
035 | |a (OCoLC)1184494418 | ||
035 | |a (DE-599)BVBBV042423082 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Milne-Thomson, L. M. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Plane Elastic Systems |c by L. M. Milne-Thomson |
250 | |a Second Edition, Corrected | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1968 | |
300 | |a 1 Online-Ressource (VIII, 211 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Angewandten Mathematik |v 6 | |
500 | |a In an epoch-making paper entitled "On an approximate solution for the bending of a beam of rectangular cross-section under any system of load with special reference to points of concentrated or discontinuous loading", received by the Royal Society on June 12, 1902, L. N. G. FlLON introduced the notion of what was subsequently called by LovE "general ized plane stress". In the same paper FlLO~ also gave the fundamental equations which express the displacement (u, v) in terms of the complex variable. The three basic equations of the theory of KoLOsov (1909) which was subsequently developed and improved by MUSKHELISHVILI (1915 and onwards) can be derived directly from Filon's equations. The derivation is indicated by FlLO)!E~KO-BoRODICH. Although FILO)! proceeded at once to the real variable, historically he is the founder of the modern theory of the application of the complex variable to plane elastic problems. The method was developed independently by A. C. STEVEXSOX in a paper received by the Royal Society in 1940 but which was not published, for security reasons, until 1945 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Elastizität |0 (DE-588)4014159-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elastizitätstheorie |0 (DE-588)4123124-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Elastizitätstheorie |0 (DE-588)4123124-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Elastizität |0 (DE-588)4014159-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-87870-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858499 |
Datensatz im Suchindex
_version_ | 1819294257264984064 |
---|---|
any_adam_object | |
author | Milne-Thomson, L. M. |
author_facet | Milne-Thomson, L. M. |
author_role | aut |
author_sort | Milne-Thomson, L. M. |
author_variant | l m m t lmm lmmt |
building | Verbundindex |
bvnumber | BV042423082 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184494418 (DE-599)BVBBV042423082 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-87870-1 |
edition | Second Edition, Corrected |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02877nam a2200517zcb4500</leader><controlfield tag="001">BV042423082</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1968 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642878701</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-87870-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540040927</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-04092-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-87870-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184494418</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042423082</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Milne-Thomson, L. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Plane Elastic Systems</subfield><subfield code="c">by L. M. Milne-Thomson</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition, Corrected</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1968</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 211 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Angewandten Mathematik</subfield><subfield code="v">6</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">In an epoch-making paper entitled "On an approximate solution for the bending of a beam of rectangular cross-section under any system of load with special reference to points of concentrated or discontinuous loading", received by the Royal Society on June 12, 1902, L. N. G. FlLON introduced the notion of what was subsequently called by LovE "general ized plane stress". In the same paper FlLO~ also gave the fundamental equations which express the displacement (u, v) in terms of the complex variable. The three basic equations of the theory of KoLOsov (1909) which was subsequently developed and improved by MUSKHELISHVILI (1915 and onwards) can be derived directly from Filon's equations. The derivation is indicated by FlLO)!E~KO-BoRODICH. Although FILO)! proceeded at once to the real variable, historically he is the founder of the modern theory of the application of the complex variable to plane elastic problems. The method was developed independently by A. C. STEVEXSOX in a paper received by the Royal Society in 1940 but which was not published, for security reasons, until 1945</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Elastizitätstheorie</subfield><subfield code="0">(DE-588)4123124-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Elastizität</subfield><subfield code="0">(DE-588)4014159-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-87870-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858499</subfield></datafield></record></collection> |
id | DE-604.BV042423082 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:27Z |
institution | BVB |
isbn | 9783642878701 9783540040927 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858499 |
oclc_num | 1184494418 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 211 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1968 |
publishDateSearch | 1968 |
publishDateSort | 1968 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Angewandten Mathematik |
spelling | Milne-Thomson, L. M. Verfasser aut Plane Elastic Systems by L. M. Milne-Thomson Second Edition, Corrected Berlin, Heidelberg Springer Berlin Heidelberg 1968 1 Online-Ressource (VIII, 211 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Angewandten Mathematik 6 In an epoch-making paper entitled "On an approximate solution for the bending of a beam of rectangular cross-section under any system of load with special reference to points of concentrated or discontinuous loading", received by the Royal Society on June 12, 1902, L. N. G. FlLON introduced the notion of what was subsequently called by LovE "general ized plane stress". In the same paper FlLO~ also gave the fundamental equations which express the displacement (u, v) in terms of the complex variable. The three basic equations of the theory of KoLOsov (1909) which was subsequently developed and improved by MUSKHELISHVILI (1915 and onwards) can be derived directly from Filon's equations. The derivation is indicated by FlLO)!E~KO-BoRODICH. Although FILO)! proceeded at once to the real variable, historically he is the founder of the modern theory of the application of the complex variable to plane elastic problems. The method was developed independently by A. C. STEVEXSOX in a paper received by the Royal Society in 1940 but which was not published, for security reasons, until 1945 Mathematics Mathematics, general Mathematik Elastizität (DE-588)4014159-7 gnd rswk-swf Elastizitätstheorie (DE-588)4123124-7 gnd rswk-swf Elastizitätstheorie (DE-588)4123124-7 s 1\p DE-604 Elastizität (DE-588)4014159-7 s 2\p DE-604 https://doi.org/10.1007/978-3-642-87870-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Milne-Thomson, L. M. Plane Elastic Systems Mathematics Mathematics, general Mathematik Elastizität (DE-588)4014159-7 gnd Elastizitätstheorie (DE-588)4123124-7 gnd |
subject_GND | (DE-588)4014159-7 (DE-588)4123124-7 |
title | Plane Elastic Systems |
title_auth | Plane Elastic Systems |
title_exact_search | Plane Elastic Systems |
title_full | Plane Elastic Systems by L. M. Milne-Thomson |
title_fullStr | Plane Elastic Systems by L. M. Milne-Thomson |
title_full_unstemmed | Plane Elastic Systems by L. M. Milne-Thomson |
title_short | Plane Elastic Systems |
title_sort | plane elastic systems |
topic | Mathematics Mathematics, general Mathematik Elastizität (DE-588)4014159-7 gnd Elastizitätstheorie (DE-588)4123124-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Elastizität Elastizitätstheorie |
url | https://doi.org/10.1007/978-3-642-87870-1 |
work_keys_str_mv | AT milnethomsonlm planeelasticsystems |