Quadratic and Hermitian Forms over Rings

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Knus, Max-Albert (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1991
Schriftenreihe:Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics 294
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042422979
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1991 |||| o||u| ||||||eng d
020 |a 9783642754012  |c Online  |9 978-3-642-75401-2 
020 |a 9783642754036  |c Print  |9 978-3-642-75403-6 
024 7 |a 10.1007/978-3-642-75401-2  |2 doi 
035 |a (OCoLC)863868229 
035 |a (DE-599)BVBBV042422979 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 512.7  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Knus, Max-Albert  |e Verfasser  |4 aut 
245 1 0 |a Quadratic and Hermitian Forms over Rings  |c by Max-Albert Knus 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1991 
300 |a 1 Online-Ressource (XI, 524p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics  |v 294  |x 0072-7830 
500 |a From its birth (in Babylon?) till 1936 the theory of quadratic forms dealt almost exclusively with forms over the real field, the complex field or the ring of integers. Only as late as 1937 were the foundations of a theory over an arbitrary field laid. This was in a famous paper by Ernst Witt. Still too early, apparently, because it took another 25 years for the ideas of Witt to be pursued, notably by Albrecht Pfister, and expanded into a full branch of algebra. Around 1960 the development of algebraic topology and algebraic K-theory led to the study of quadratic forms over commutative rings and hermitian forms over rings with involutions. Not surprisingly, in this more general setting, algebraic K-theory plays the role that linear algebra plays in the case of fields. This book exposes the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial aspects of the theory. The advantage of doing so is not only aesthetical: on the one hand, some classical proofs gain in simplicity and transparency, the most notable examples being the results on low-dimensional spinor groups; on the other hand new results are obtained, which went unnoticed even for fields, as in the case of involutions on 16-dimensional central simple algebras. The first chapter gives an introduction to the basic definitions and properties of hermitian forms which are used throughout the book 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Number theory 
650 4 |a Number Theory 
650 4 |a Algebraic Geometry 
650 4 |a Mathematik 
650 0 7 |a Ring  |g Mathematik  |0 (DE-588)4128084-2  |2 gnd  |9 rswk-swf 
650 0 7 |a Kommutativer Ring  |0 (DE-588)4164825-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Hermitesche Form  |0 (DE-588)4159610-9  |2 gnd  |9 rswk-swf 
650 0 7 |a Quadratische Form  |0 (DE-588)4128297-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Ring  |g Mathematik  |0 (DE-588)4128084-2  |D s 
689 0 1 |a Hermitesche Form  |0 (DE-588)4159610-9  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Ring  |g Mathematik  |0 (DE-588)4128084-2  |D s 
689 1 1 |a Quadratische Form  |0 (DE-588)4128297-8  |D s 
689 1 |8 2\p  |5 DE-604 
689 2 0 |a Kommutativer Ring  |0 (DE-588)4164825-0  |D s 
689 2 |8 3\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-642-75401-2  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027858396 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 3\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2069988
_version_ 1816714050140110848
any_adam_object
author Knus, Max-Albert
author_facet Knus, Max-Albert
author_role aut
author_sort Knus, Max-Albert
author_variant m a k mak
building Verbundindex
bvnumber BV042422979
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)863868229
(DE-599)BVBBV042422979
dewey-full 512.7
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 512 - Algebra
dewey-raw 512.7
dewey-search 512.7
dewey-sort 3512.7
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-642-75401-2
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03825nmm a2200613zcb4500</leader><controlfield tag="001">BV042422979</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1991 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642754012</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-75401-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642754036</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-75403-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-75401-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863868229</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422979</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.7</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knus, Max-Albert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quadratic and Hermitian Forms over Rings</subfield><subfield code="c">by Max-Albert Knus</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1991</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 524p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics</subfield><subfield code="v">294</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">From its birth (in Babylon?) till 1936 the theory of quadratic forms dealt almost exclusively with forms over the real field, the complex field or the ring of integers. Only as late as 1937 were the foundations of a theory over an arbitrary field laid. This was in a famous paper by Ernst Witt. Still too early, apparently, because it took another 25 years for the ideas of Witt to be pursued, notably by Albrecht Pfister, and expanded into a full branch of algebra. Around 1960 the development of algebraic topology and algebraic K-theory led to the study of quadratic forms over commutative rings and hermitian forms over rings with involutions. Not surprisingly, in this more general setting, algebraic K-theory plays the role that linear algebra plays in the case of fields. This book exposes the theory of quadratic and hermitian forms over rings in a very general setting. It avoids, as far as possible, any restriction on the characteristic and takes full advantage of the functorial aspects of the theory. The advantage of doing so is not only aesthetical: on the one hand, some classical proofs gain in simplicity and transparency, the most notable examples being the results on low-dimensional spinor groups; on the other hand new results are obtained, which went unnoticed even for fields, as in the case of involutions on 16-dimensional central simple algebras. The first chapter gives an introduction to the basic definitions and properties of hermitian forms which are used throughout the book</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Number Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hermitesche Form</subfield><subfield code="0">(DE-588)4159610-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hermitesche Form</subfield><subfield code="0">(DE-588)4159610-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Ring</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4128084-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Quadratische Form</subfield><subfield code="0">(DE-588)4128297-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Kommutativer Ring</subfield><subfield code="0">(DE-588)4164825-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-75401-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858396</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042422979
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9783642754012
9783642754036
issn 0072-7830
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858396
oclc_num 863868229
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XI, 524p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1991
publishDateSearch 1991
publishDateSort 1991
publisher Springer Berlin Heidelberg
record_format marc
series2 Grundlehren der mathematischen Wissenschaften, A Series of Comprehensive Studies in Mathematics
spellingShingle Knus, Max-Albert
Quadratic and Hermitian Forms over Rings
Mathematics
Geometry, algebraic
Number theory
Number Theory
Algebraic Geometry
Mathematik
Ring Mathematik (DE-588)4128084-2 gnd
Kommutativer Ring (DE-588)4164825-0 gnd
Hermitesche Form (DE-588)4159610-9 gnd
Quadratische Form (DE-588)4128297-8 gnd
subject_GND (DE-588)4128084-2
(DE-588)4164825-0
(DE-588)4159610-9
(DE-588)4128297-8
title Quadratic and Hermitian Forms over Rings
title_auth Quadratic and Hermitian Forms over Rings
title_exact_search Quadratic and Hermitian Forms over Rings
title_full Quadratic and Hermitian Forms over Rings by Max-Albert Knus
title_fullStr Quadratic and Hermitian Forms over Rings by Max-Albert Knus
title_full_unstemmed Quadratic and Hermitian Forms over Rings by Max-Albert Knus
title_short Quadratic and Hermitian Forms over Rings
title_sort quadratic and hermitian forms over rings
topic Mathematics
Geometry, algebraic
Number theory
Number Theory
Algebraic Geometry
Mathematik
Ring Mathematik (DE-588)4128084-2 gnd
Kommutativer Ring (DE-588)4164825-0 gnd
Hermitesche Form (DE-588)4159610-9 gnd
Quadratische Form (DE-588)4128297-8 gnd
topic_facet Mathematics
Geometry, algebraic
Number theory
Number Theory
Algebraic Geometry
Mathematik
Ring Mathematik
Kommutativer Ring
Hermitesche Form
Quadratische Form
url https://doi.org/10.1007/978-3-642-75401-2
work_keys_str_mv AT knusmaxalbert quadraticandhermitianformsoverrings