Probability Measures on Locally Compact Groups
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1977
|
Schriftenreihe: | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics
94 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nam a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422911 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1977 xx o|||| 00||| eng d | ||
020 | |a 9783642667060 |c Online |9 978-3-642-66706-0 | ||
020 | |a 9783642667084 |c Print |9 978-3-642-66708-4 | ||
024 | 7 | |a 10.1007/978-3-642-66706-0 |2 doi | |
035 | |a (OCoLC)863792406 | ||
035 | |a (DE-599)BVBBV042422911 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Heyer, Herbert |e Verfasser |4 aut | |
245 | 1 | 0 | |a Probability Measures on Locally Compact Groups |c by Herbert Heyer |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1977 | |
300 | |a 1 Online-Ressource (X, 532 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |v 94 |x 0071-1136 | |
500 | |a Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lokal kompakte Gruppe |0 (DE-588)4168094-7 |D s |
689 | 0 | 1 | |a Wahrscheinlichkeitsmaß |0 (DE-588)4137556-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Wahrscheinlichkeitsrechnung |0 (DE-588)4064324-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-66706-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027858328 |
Datensatz im Suchindex
_version_ | 1819294256875962368 |
---|---|
any_adam_object | |
author | Heyer, Herbert |
author_facet | Heyer, Herbert |
author_role | aut |
author_sort | Heyer, Herbert |
author_variant | h h hh |
building | Verbundindex |
bvnumber | BV042422911 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863792406 (DE-599)BVBBV042422911 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-66706-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03293nam a2200529zcb4500</leader><controlfield tag="001">BV042422911</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1977 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642667060</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-66706-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642667084</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-66708-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-66706-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863792406</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422911</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Heyer, Herbert</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Probability Measures on Locally Compact Groups</subfield><subfield code="c">by Herbert Heyer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1977</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 532 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics</subfield><subfield code="v">94</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lokal kompakte Gruppe</subfield><subfield code="0">(DE-588)4168094-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Wahrscheinlichkeitsmaß</subfield><subfield code="0">(DE-588)4137556-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Wahrscheinlichkeitsrechnung</subfield><subfield code="0">(DE-588)4064324-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-66706-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858328</subfield></datafield></record></collection> |
id | DE-604.BV042422911 |
illustrated | Not Illustrated |
indexdate | 2024-12-24T04:23:26Z |
institution | BVB |
isbn | 9783642667060 9783642667084 |
issn | 0071-1136 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858328 |
oclc_num | 863792406 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 532 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1977 |
publishDateSearch | 1977 |
publishDateSort | 1977 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics |
spelling | Heyer, Herbert Verfasser aut Probability Measures on Locally Compact Groups by Herbert Heyer Berlin, Heidelberg Springer Berlin Heidelberg 1977 1 Online-Ressource (X, 532 p) txt rdacontent c rdamedia cr rdacarrier Ergebnisse der Mathematik und ihrer Grenzgebiete, A Series of Modern Surveys in Mathematics 94 0071-1136 Probability measures on algebraic-topological structures such as topological semi groups, groups, and vector spaces have become of increasing importance in recent years for probabilists interested in the structural aspects of the theory as well as for analysts aiming at applications within the scope of probability theory. In order to obtain a natural framework for a first systematic presentation of the most developed part of the work done in the field we restrict ourselves to prob ability measures on locally compact groups. At the same time we stress the non Abelian aspect. Thus the book is concerned with a set of problems which can be regarded either from the probabilistic or from the harmonic-analytic point of view. In fact, it seems to be the synthesis of these two viewpoints, the initial inspiration coming from probability and the refined techniques from harmonic analysis which made this newly established subject so fascinating. The goal of the presentation is to give a fairly complete treatment of the central limit problem for probability measures on a locally compact group. In analogy to the classical theory the discussion is centered around the infinitely divisible probability measures on the group and their relationship to the convergence of infinitesimal triangular systems Mathematics Mathematics, general Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd rswk-swf Lokal kompakte Gruppe (DE-588)4168094-7 gnd rswk-swf Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd rswk-swf Lokal kompakte Gruppe (DE-588)4168094-7 s Wahrscheinlichkeitsmaß (DE-588)4137556-7 s 1\p DE-604 Wahrscheinlichkeitsrechnung (DE-588)4064324-4 s 2\p DE-604 https://doi.org/10.1007/978-3-642-66706-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Heyer, Herbert Probability Measures on Locally Compact Groups Mathematics Mathematics, general Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Lokal kompakte Gruppe (DE-588)4168094-7 gnd Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd |
subject_GND | (DE-588)4064324-4 (DE-588)4168094-7 (DE-588)4137556-7 |
title | Probability Measures on Locally Compact Groups |
title_auth | Probability Measures on Locally Compact Groups |
title_exact_search | Probability Measures on Locally Compact Groups |
title_full | Probability Measures on Locally Compact Groups by Herbert Heyer |
title_fullStr | Probability Measures on Locally Compact Groups by Herbert Heyer |
title_full_unstemmed | Probability Measures on Locally Compact Groups by Herbert Heyer |
title_short | Probability Measures on Locally Compact Groups |
title_sort | probability measures on locally compact groups |
topic | Mathematics Mathematics, general Mathematik Wahrscheinlichkeitsrechnung (DE-588)4064324-4 gnd Lokal kompakte Gruppe (DE-588)4168094-7 gnd Wahrscheinlichkeitsmaß (DE-588)4137556-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Wahrscheinlichkeitsrechnung Lokal kompakte Gruppe Wahrscheinlichkeitsmaß |
url | https://doi.org/10.1007/978-3-642-66706-0 |
work_keys_str_mv | AT heyerherbert probabilitymeasuresonlocallycompactgroups |