Integral Operators in the Theory of Linear Partial Differential Equations

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Bergman, Stefan (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1961
Schriftenreihe:Ergebnisse der Mathematik und ihrer Grenzgebiete 23
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042422851
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1961 xx o|||| 00||| eng d
020 |a 9783642649851  |c Online  |9 978-3-642-64985-1 
020 |a 9783642649875  |c Print  |9 978-3-642-64987-5 
024 7 |a 10.1007/978-3-642-64985-1  |2 doi 
035 |a (OCoLC)1184457793 
035 |a (DE-599)BVBBV042422851 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 510  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Bergman, Stefan  |e Verfasser  |4 aut 
245 1 0 |a Integral Operators in the Theory of Linear Partial Differential Equations  |c by Stefan Bergman 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1961 
300 |a 1 Online-Ressource (X, 148 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete  |v 23  |x 0071-1136 
500 |a The present book deals with the construction of solutions of linear partial differential equations by means of integral operators which transform analytic functions of a complex variable into such solutions. The theory of analytic functions has achieved a high degree of deve­ lopment and simplicity, and the operator method permits us to exploit this theory in the study of differential equations. Although the study of existence and uniqueness of solutions has been highly developed, much less attention has been paid to the investigation of function theo­ retical properties and to the explicit construction of regular and singular solutions using a unified general procedure. This book attempts to fill in the gap in this direction. Integral operators of various types have been used for a long time in the mathematical literature. In this connection one needs only to mention Euler and Laplace. The author has not attempted to give a complete account of all known operators, but rather has aimed at developing a unified approach. For this purpose he uses special operators which preserve various function theoretical properties of analytic functions, such as domains of regularity, validity of series development, connection between the coefficients of these developments and location and character of singularities, etc. However, all efforts were made to give a complete bibliography to help the reader to find more detailed information 
650 4 |a Mathematics 
650 4 |a Mathematics, general 
650 4 |a Mathematik 
650 0 7 |a Lineare partielle Differentialgleichung  |0 (DE-588)4167708-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |2 gnd  |9 rswk-swf 
650 0 7 |a Integraloperator  |0 (DE-588)4131247-8  |2 gnd  |9 rswk-swf 
689 0 0 |a Partielle Differentialgleichung  |0 (DE-588)4044779-0  |D s 
689 0 1 |a Integraloperator  |0 (DE-588)4131247-8  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Lineare partielle Differentialgleichung  |0 (DE-588)4167708-0  |D s 
689 1 1 |a Integraloperator  |0 (DE-588)4131247-8  |D s 
689 1 |8 2\p  |5 DE-604 
856 4 0 |u https://doi.org/10.1007/978-3-642-64985-1  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027858268 

Datensatz im Suchindex

_version_ 1819294256867573760
any_adam_object
author Bergman, Stefan
author_facet Bergman, Stefan
author_role aut
author_sort Bergman, Stefan
author_variant s b sb
building Verbundindex
bvnumber BV042422851
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)1184457793
(DE-599)BVBBV042422851
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-642-64985-1
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03501nam a2200541zcb4500</leader><controlfield tag="001">BV042422851</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1961 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642649851</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-64985-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642649875</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-64987-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-64985-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184457793</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422851</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bergman, Stefan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Integral Operators in the Theory of Linear Partial Differential Equations</subfield><subfield code="c">by Stefan Bergman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1961</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 148 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Ergebnisse der Mathematik und ihrer Grenzgebiete</subfield><subfield code="v">23</subfield><subfield code="x">0071-1136</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present book deals with the construction of solutions of linear partial differential equations by means of integral operators which transform analytic functions of a complex variable into such solutions. The theory of analytic functions has achieved a high degree of deve­ lopment and simplicity, and the operator method permits us to exploit this theory in the study of differential equations. Although the study of existence and uniqueness of solutions has been highly developed, much less attention has been paid to the investigation of function theo­ retical properties and to the explicit construction of regular and singular solutions using a unified general procedure. This book attempts to fill in the gap in this direction. Integral operators of various types have been used for a long time in the mathematical literature. In this connection one needs only to mention Euler and Laplace. The author has not attempted to give a complete account of all known operators, but rather has aimed at developing a unified approach. For this purpose he uses special operators which preserve various function theoretical properties of analytic functions, such as domains of regularity, validity of series development, connection between the coefficients of these developments and location and character of singularities, etc. However, all efforts were made to give a complete bibliography to help the reader to find more detailed information</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Integraloperator</subfield><subfield code="0">(DE-588)4131247-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-64985-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858268</subfield></datafield></record></collection>
id DE-604.BV042422851
illustrated Not Illustrated
indexdate 2024-12-24T04:23:26Z
institution BVB
isbn 9783642649851
9783642649875
issn 0071-1136
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858268
oclc_num 1184457793
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (X, 148 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1961
publishDateSearch 1961
publishDateSort 1961
publisher Springer Berlin Heidelberg
record_format marc
series2 Ergebnisse der Mathematik und ihrer Grenzgebiete
spelling Bergman, Stefan Verfasser aut
Integral Operators in the Theory of Linear Partial Differential Equations by Stefan Bergman
Berlin, Heidelberg Springer Berlin Heidelberg 1961
1 Online-Ressource (X, 148 p)
txt rdacontent
c rdamedia
cr rdacarrier
Ergebnisse der Mathematik und ihrer Grenzgebiete 23 0071-1136
The present book deals with the construction of solutions of linear partial differential equations by means of integral operators which transform analytic functions of a complex variable into such solutions. The theory of analytic functions has achieved a high degree of deve­ lopment and simplicity, and the operator method permits us to exploit this theory in the study of differential equations. Although the study of existence and uniqueness of solutions has been highly developed, much less attention has been paid to the investigation of function theo­ retical properties and to the explicit construction of regular and singular solutions using a unified general procedure. This book attempts to fill in the gap in this direction. Integral operators of various types have been used for a long time in the mathematical literature. In this connection one needs only to mention Euler and Laplace. The author has not attempted to give a complete account of all known operators, but rather has aimed at developing a unified approach. For this purpose he uses special operators which preserve various function theoretical properties of analytic functions, such as domains of regularity, validity of series development, connection between the coefficients of these developments and location and character of singularities, etc. However, all efforts were made to give a complete bibliography to help the reader to find more detailed information
Mathematics
Mathematics, general
Mathematik
Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd rswk-swf
Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf
Integraloperator (DE-588)4131247-8 gnd rswk-swf
Partielle Differentialgleichung (DE-588)4044779-0 s
Integraloperator (DE-588)4131247-8 s
1\p DE-604
Lineare partielle Differentialgleichung (DE-588)4167708-0 s
2\p DE-604
https://doi.org/10.1007/978-3-642-64985-1 Verlag Volltext
1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk
spellingShingle Bergman, Stefan
Integral Operators in the Theory of Linear Partial Differential Equations
Mathematics
Mathematics, general
Mathematik
Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
Integraloperator (DE-588)4131247-8 gnd
subject_GND (DE-588)4167708-0
(DE-588)4044779-0
(DE-588)4131247-8
title Integral Operators in the Theory of Linear Partial Differential Equations
title_auth Integral Operators in the Theory of Linear Partial Differential Equations
title_exact_search Integral Operators in the Theory of Linear Partial Differential Equations
title_full Integral Operators in the Theory of Linear Partial Differential Equations by Stefan Bergman
title_fullStr Integral Operators in the Theory of Linear Partial Differential Equations by Stefan Bergman
title_full_unstemmed Integral Operators in the Theory of Linear Partial Differential Equations by Stefan Bergman
title_short Integral Operators in the Theory of Linear Partial Differential Equations
title_sort integral operators in the theory of linear partial differential equations
topic Mathematics
Mathematics, general
Mathematik
Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd
Partielle Differentialgleichung (DE-588)4044779-0 gnd
Integraloperator (DE-588)4131247-8 gnd
topic_facet Mathematics
Mathematics, general
Mathematik
Lineare partielle Differentialgleichung
Partielle Differentialgleichung
Integraloperator
url https://doi.org/10.1007/978-3-642-64985-1
work_keys_str_mv AT bergmanstefan integraloperatorsinthetheoryoflinearpartialdifferentialequations