Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Khenkin, G. M. (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1994
Schriftenreihe:Encyclopaedia of Mathematical Sciences 8
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nam a2200000zcb4500
001 BV042422689
003 DE-604
005 00000000000000.0
007 cr|uuu---uuuuu
008 150317s1994 xx o|||| 00||| eng d
020 |a 9783642578823  |c Online  |9 978-3-642-57882-3 
020 |a 9783642633911  |c Print  |9 978-3-642-63391-1 
024 7 |a 10.1007/978-3-642-57882-3  |2 doi 
035 |a (OCoLC)905366601 
035 |a (DE-599)BVBBV042422689 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 516.35  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Khenkin, G. M.  |e Verfasser  |4 aut 
245 1 0 |a Several Complex Variables II  |b Function Theory in Classical Domains Complex Potential Theory  |c edited by G. M. Khenkin, A. G. Vitushkin 
264 1 |a Berlin, Heidelberg  |b Springer Berlin Heidelberg  |c 1994 
300 |a 1 Online-Ressource (VII, 262 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 0 |a Encyclopaedia of Mathematical Sciences  |v 8  |x 0938-0396 
500 |a Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten­ tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given 
650 4 |a Mathematics 
650 4 |a Geometry, algebraic 
650 4 |a Potential theory (Mathematics) 
650 4 |a Algebraic topology 
650 4 |a Algebraic Geometry 
650 4 |a Algebraic Topology 
650 4 |a Potential Theory 
650 4 |a Theoretical, Mathematical and Computational Physics 
650 4 |a Mathematik 
700 1 |a Vitushkin, A. G.  |e Sonstige  |4 oth 
856 4 0 |u https://doi.org/10.1007/978-3-642-57882-3  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA 
912 |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
943 1 |a oai:aleph.bib-bvb.de:BVB01-027858106 

Datensatz im Suchindex

_version_ 1819294256392568832
any_adam_object
author Khenkin, G. M.
author_facet Khenkin, G. M.
author_role aut
author_sort Khenkin, G. M.
author_variant g m k gm gmk
building Verbundindex
bvnumber BV042422689
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)905366601
(DE-599)BVBBV042422689
dewey-full 516.35
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 516 - Geometry
dewey-raw 516.35
dewey-search 516.35
dewey-sort 3516.35
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-642-57882-3
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03127nam a2200493zcb4500</leader><controlfield tag="001">BV042422689</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 xx o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642578823</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-57882-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642633911</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-63391-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-57882-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905366601</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422689</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Khenkin, G. M.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Several Complex Variables II</subfield><subfield code="b">Function Theory in Classical Domains Complex Potential Theory</subfield><subfield code="c">edited by G. M. Khenkin, A. G. Vitushkin</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 262 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Encyclopaedia of Mathematical Sciences</subfield><subfield code="v">8</subfield><subfield code="x">0938-0396</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten­ tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential theory (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Potential Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vitushkin, A. G.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-57882-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858106</subfield></datafield></record></collection>
id DE-604.BV042422689
illustrated Not Illustrated
indexdate 2024-12-24T04:23:26Z
institution BVB
isbn 9783642578823
9783642633911
issn 0938-0396
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027858106
oclc_num 905366601
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (VII, 262 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1994
publishDateSearch 1994
publishDateSort 1994
publisher Springer Berlin Heidelberg
record_format marc
series2 Encyclopaedia of Mathematical Sciences
spelling Khenkin, G. M. Verfasser aut
Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory edited by G. M. Khenkin, A. G. Vitushkin
Berlin, Heidelberg Springer Berlin Heidelberg 1994
1 Online-Ressource (VII, 262 p)
txt rdacontent
c rdamedia
cr rdacarrier
Encyclopaedia of Mathematical Sciences 8 0938-0396
Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten­ tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given
Mathematics
Geometry, algebraic
Potential theory (Mathematics)
Algebraic topology
Algebraic Geometry
Algebraic Topology
Potential Theory
Theoretical, Mathematical and Computational Physics
Mathematik
Vitushkin, A. G. Sonstige oth
https://doi.org/10.1007/978-3-642-57882-3 Verlag Volltext
spellingShingle Khenkin, G. M.
Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory
Mathematics
Geometry, algebraic
Potential theory (Mathematics)
Algebraic topology
Algebraic Geometry
Algebraic Topology
Potential Theory
Theoretical, Mathematical and Computational Physics
Mathematik
title Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory
title_auth Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory
title_exact_search Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory
title_full Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory edited by G. M. Khenkin, A. G. Vitushkin
title_fullStr Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory edited by G. M. Khenkin, A. G. Vitushkin
title_full_unstemmed Several Complex Variables II Function Theory in Classical Domains Complex Potential Theory edited by G. M. Khenkin, A. G. Vitushkin
title_short Several Complex Variables II
title_sort several complex variables ii function theory in classical domains complex potential theory
title_sub Function Theory in Classical Domains Complex Potential Theory
topic Mathematics
Geometry, algebraic
Potential theory (Mathematics)
Algebraic topology
Algebraic Geometry
Algebraic Topology
Potential Theory
Theoretical, Mathematical and Computational Physics
Mathematik
topic_facet Mathematics
Geometry, algebraic
Potential theory (Mathematics)
Algebraic topology
Algebraic Geometry
Algebraic Topology
Potential Theory
Theoretical, Mathematical and Computational Physics
Mathematik
url https://doi.org/10.1007/978-3-642-57882-3
work_keys_str_mv AT khenkingm severalcomplexvariablesiifunctiontheoryinclassicaldomainscomplexpotentialtheory
AT vitushkinag severalcomplexvariablesiifunctiontheoryinclassicaldomainscomplexpotentialtheory