Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Meyer-Spasche, Rita (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Birkhäuser Basel 1999
Schriftenreihe:ISNM International Series of Numerical Mathematics 128
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!

MARC

LEADER 00000nmm a2200000zcb4500
001 BV042422214
003 DE-604
005 20200505
007 cr|uuu---uuuuu
008 150317s1999 |||| o||u| ||||||eng d
020 |a 9783034887090  |c Online  |9 978-3-0348-8709-0 
020 |a 9783034897389  |c Print  |9 978-3-0348-9738-9 
024 7 |a 10.1007/978-3-0348-8709-0  |2 doi 
035 |a (OCoLC)879623354 
035 |a (DE-599)BVBBV042422214 
040 |a DE-604  |b ger  |e aacr 
041 0 |a eng 
049 |a DE-384  |a DE-703  |a DE-91  |a DE-634 
082 0 |a 510  |2 23 
084 |a MAT 000  |2 stub 
100 1 |a Meyer-Spasche, Rita  |e Verfasser  |0 (DE-588)108581705  |4 aut 
245 1 0 |a Pattern Formation in Viscous Flows  |b The Taylor-Couette Problem and Rayleigh-Bénard Convection  |c by Rita Meyer-Spasche 
264 1 |a Basel  |b Birkhäuser Basel  |c 1999 
300 |a 1 Online-Ressource (XI, 212 p) 
336 |b txt  |2 rdacontent 
337 |b c  |2 rdamedia 
338 |b cr  |2 rdacarrier 
490 1 |a ISNM International Series of Numerical Mathematics  |v 128 
500 |a It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representation of the motion of a fluid in some particular case in which instability can actually be observed, so that a detailed comparison can be made between the results of analysis and those of experiment. - G.I. Taylor (1923) Though the equations of fluid dynamics are quite complicated, there are configurations which allow simple flow patterns as stationary solutions (e.g. flows between parallel plates or between rotating cylinders). These flow patterns can be obtained only in certain parameter regimes. For parameter values not in these regimes they cannot be obtained, mainly for two different reasons: - The mathematical existence of the solutions is parameter dependent; or - the solutions exist mathematically, but they are not stable. For finding stable steady states, two steps are required: the steady states have to be found and their stability has to be determined 
650 4 |a Mathematics 
650 4 |a Mathematics, general 
650 4 |a Mathematik 
650 0 7 |a Bénard-Effekt  |0 (DE-588)4144456-5  |2 gnd  |9 rswk-swf 
650 0 7 |a Taylor-Couette-Strömung  |0 (DE-588)4249869-7  |2 gnd  |9 rswk-swf 
689 0 0 |a Bénard-Effekt  |0 (DE-588)4144456-5  |D s 
689 0 |8 1\p  |5 DE-604 
689 1 0 |a Taylor-Couette-Strömung  |0 (DE-588)4249869-7  |D s 
689 1 |8 2\p  |5 DE-604 
830 0 |a ISNM International Series of Numerical Mathematics  |v 128  |w (DE-604)BV022447306  |9 128 
856 4 0 |u https://doi.org/10.1007/978-3-0348-8709-0  |x Verlag  |3 Volltext 
912 |a ZDB-2-SMA  |a ZDB-2-BAE 
940 1 |q ZDB-2-SMA_Archive 
999 |a oai:aleph.bib-bvb.de:BVB01-027857631 
883 1 |8 1\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 
883 1 |8 2\p  |a cgwrk  |d 20201028  |q DE-101  |u https://d-nb.info/provenance/plan#cgwrk 

Datensatz im Suchindex

DE-BY-TUM_katkey 2069223
_version_ 1816714049717534720
any_adam_object
author Meyer-Spasche, Rita
author_GND (DE-588)108581705
author_facet Meyer-Spasche, Rita
author_role aut
author_sort Meyer-Spasche, Rita
author_variant r m s rms
building Verbundindex
bvnumber BV042422214
classification_tum MAT 000
collection ZDB-2-SMA
ZDB-2-BAE
ctrlnum (OCoLC)879623354
(DE-599)BVBBV042422214
dewey-full 510
dewey-hundreds 500 - Natural sciences and mathematics
dewey-ones 510 - Mathematics
dewey-raw 510
dewey-search 510
dewey-sort 3510
dewey-tens 510 - Mathematics
discipline Mathematik
doi_str_mv 10.1007/978-3-0348-8709-0
format Electronic
eBook
fullrecord <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02924nmm a2200505zcb4500</leader><controlfield tag="001">BV042422214</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200505 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034887090</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8709-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034897389</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9738-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8709-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422214</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meyer-Spasche, Rita</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108581705</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern Formation in Viscous Flows</subfield><subfield code="b">The Taylor-Couette Problem and Rayleigh-Bénard Convection</subfield><subfield code="c">by Rita Meyer-Spasche</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 212 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ISNM International Series of Numerical Mathematics</subfield><subfield code="v">128</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representation of the motion of a fluid in some particular case in which instability can actually be observed, so that a detailed comparison can be made between the results of analysis and those of experiment. - G.I. Taylor (1923) Though the equations of fluid dynamics are quite complicated, there are configurations which allow simple flow patterns as stationary solutions (e.g. flows between parallel plates or between rotating cylinders). These flow patterns can be obtained only in certain parameter regimes. For parameter values not in these regimes they cannot be obtained, mainly for two different reasons: - The mathematical existence of the solutions is parameter dependent; or - the solutions exist mathematically, but they are not stable. For finding stable steady states, two steps are required: the steady states have to be found and their stability has to be determined</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bénard-Effekt</subfield><subfield code="0">(DE-588)4144456-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Taylor-Couette-Strömung</subfield><subfield code="0">(DE-588)4249869-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bénard-Effekt</subfield><subfield code="0">(DE-588)4144456-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Taylor-Couette-Strömung</subfield><subfield code="0">(DE-588)4249869-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">ISNM International Series of Numerical Mathematics</subfield><subfield code="v">128</subfield><subfield code="w">(DE-604)BV022447306</subfield><subfield code="9">128</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8709-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857631</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection>
id DE-604.BV042422214
illustrated Not Illustrated
indexdate 2024-11-25T17:51:13Z
institution BVB
isbn 9783034887090
9783034897389
language English
oai_aleph_id oai:aleph.bib-bvb.de:BVB01-027857631
oclc_num 879623354
open_access_boolean
owner DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
owner_facet DE-384
DE-703
DE-91
DE-BY-TUM
DE-634
physical 1 Online-Ressource (XI, 212 p)
psigel ZDB-2-SMA
ZDB-2-BAE
ZDB-2-SMA_Archive
publishDate 1999
publishDateSearch 1999
publishDateSort 1999
publisher Birkhäuser Basel
record_format marc
series ISNM International Series of Numerical Mathematics
series2 ISNM International Series of Numerical Mathematics
spellingShingle Meyer-Spasche, Rita
Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection
ISNM International Series of Numerical Mathematics
Mathematics
Mathematics, general
Mathematik
Bénard-Effekt (DE-588)4144456-5 gnd
Taylor-Couette-Strömung (DE-588)4249869-7 gnd
subject_GND (DE-588)4144456-5
(DE-588)4249869-7
title Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection
title_auth Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection
title_exact_search Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection
title_full Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection by Rita Meyer-Spasche
title_fullStr Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection by Rita Meyer-Spasche
title_full_unstemmed Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection by Rita Meyer-Spasche
title_short Pattern Formation in Viscous Flows
title_sort pattern formation in viscous flows the taylor couette problem and rayleigh benard convection
title_sub The Taylor-Couette Problem and Rayleigh-Bénard Convection
topic Mathematics
Mathematics, general
Mathematik
Bénard-Effekt (DE-588)4144456-5 gnd
Taylor-Couette-Strömung (DE-588)4249869-7 gnd
topic_facet Mathematics
Mathematics, general
Mathematik
Bénard-Effekt
Taylor-Couette-Strömung
url https://doi.org/10.1007/978-3-0348-8709-0
volume_link (DE-604)BV022447306
work_keys_str_mv AT meyerspascherita patternformationinviscousflowsthetaylorcouetteproblemandrayleighbenardconvection