Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1999
|
Schriftenreihe: | ISNM International Series of Numerical Mathematics
128 |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422214 | ||
003 | DE-604 | ||
005 | 20200505 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783034887090 |c Online |9 978-3-0348-8709-0 | ||
020 | |a 9783034897389 |c Print |9 978-3-0348-9738-9 | ||
024 | 7 | |a 10.1007/978-3-0348-8709-0 |2 doi | |
035 | |a (OCoLC)879623354 | ||
035 | |a (DE-599)BVBBV042422214 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Meyer-Spasche, Rita |e Verfasser |0 (DE-588)108581705 |4 aut | |
245 | 1 | 0 | |a Pattern Formation in Viscous Flows |b The Taylor-Couette Problem and Rayleigh-Bénard Convection |c by Rita Meyer-Spasche |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1999 | |
300 | |a 1 Online-Ressource (XI, 212 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a ISNM International Series of Numerical Mathematics |v 128 | |
500 | |a It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representation of the motion of a fluid in some particular case in which instability can actually be observed, so that a detailed comparison can be made between the results of analysis and those of experiment. - G.I. Taylor (1923) Though the equations of fluid dynamics are quite complicated, there are configurations which allow simple flow patterns as stationary solutions (e.g. flows between parallel plates or between rotating cylinders). These flow patterns can be obtained only in certain parameter regimes. For parameter values not in these regimes they cannot be obtained, mainly for two different reasons: - The mathematical existence of the solutions is parameter dependent; or - the solutions exist mathematically, but they are not stable. For finding stable steady states, two steps are required: the steady states have to be found and their stability has to be determined | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Bénard-Effekt |0 (DE-588)4144456-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Taylor-Couette-Strömung |0 (DE-588)4249869-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bénard-Effekt |0 (DE-588)4144456-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Taylor-Couette-Strömung |0 (DE-588)4249869-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
830 | 0 | |a ISNM International Series of Numerical Mathematics |v 128 |w (DE-604)BV022447306 |9 128 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8709-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857631 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
DE-BY-TUM_katkey | 2069223 |
---|---|
_version_ | 1816714049717534720 |
any_adam_object | |
author | Meyer-Spasche, Rita |
author_GND | (DE-588)108581705 |
author_facet | Meyer-Spasche, Rita |
author_role | aut |
author_sort | Meyer-Spasche, Rita |
author_variant | r m s rms |
building | Verbundindex |
bvnumber | BV042422214 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879623354 (DE-599)BVBBV042422214 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8709-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02924nmm a2200505zcb4500</leader><controlfield tag="001">BV042422214</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200505 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034887090</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8709-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034897389</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9738-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8709-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879623354</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422214</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Meyer-Spasche, Rita</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)108581705</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern Formation in Viscous Flows</subfield><subfield code="b">The Taylor-Couette Problem and Rayleigh-Bénard Convection</subfield><subfield code="c">by Rita Meyer-Spasche</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 212 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">ISNM International Series of Numerical Mathematics</subfield><subfield code="v">128</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">It seems doubtful whether we can expect to understand fully the instability of fluid flow without obtaining a mathematical representation of the motion of a fluid in some particular case in which instability can actually be observed, so that a detailed comparison can be made between the results of analysis and those of experiment. - G.I. Taylor (1923) Though the equations of fluid dynamics are quite complicated, there are configurations which allow simple flow patterns as stationary solutions (e.g. flows between parallel plates or between rotating cylinders). These flow patterns can be obtained only in certain parameter regimes. For parameter values not in these regimes they cannot be obtained, mainly for two different reasons: - The mathematical existence of the solutions is parameter dependent; or - the solutions exist mathematically, but they are not stable. For finding stable steady states, two steps are required: the steady states have to be found and their stability has to be determined</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bénard-Effekt</subfield><subfield code="0">(DE-588)4144456-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Taylor-Couette-Strömung</subfield><subfield code="0">(DE-588)4249869-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bénard-Effekt</subfield><subfield code="0">(DE-588)4144456-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Taylor-Couette-Strömung</subfield><subfield code="0">(DE-588)4249869-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">ISNM International Series of Numerical Mathematics</subfield><subfield code="v">128</subfield><subfield code="w">(DE-604)BV022447306</subfield><subfield code="9">128</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8709-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857631</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422214 |
illustrated | Not Illustrated |
indexdate | 2024-11-25T17:51:13Z |
institution | BVB |
isbn | 9783034887090 9783034897389 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857631 |
oclc_num | 879623354 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 212 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Birkhäuser Basel |
record_format | marc |
series | ISNM International Series of Numerical Mathematics |
series2 | ISNM International Series of Numerical Mathematics |
spellingShingle | Meyer-Spasche, Rita Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection ISNM International Series of Numerical Mathematics Mathematics Mathematics, general Mathematik Bénard-Effekt (DE-588)4144456-5 gnd Taylor-Couette-Strömung (DE-588)4249869-7 gnd |
subject_GND | (DE-588)4144456-5 (DE-588)4249869-7 |
title | Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection |
title_auth | Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection |
title_exact_search | Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection |
title_full | Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection by Rita Meyer-Spasche |
title_fullStr | Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection by Rita Meyer-Spasche |
title_full_unstemmed | Pattern Formation in Viscous Flows The Taylor-Couette Problem and Rayleigh-Bénard Convection by Rita Meyer-Spasche |
title_short | Pattern Formation in Viscous Flows |
title_sort | pattern formation in viscous flows the taylor couette problem and rayleigh benard convection |
title_sub | The Taylor-Couette Problem and Rayleigh-Bénard Convection |
topic | Mathematics Mathematics, general Mathematik Bénard-Effekt (DE-588)4144456-5 gnd Taylor-Couette-Strömung (DE-588)4249869-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Bénard-Effekt Taylor-Couette-Strömung |
url | https://doi.org/10.1007/978-3-0348-8709-0 |
volume_link | (DE-604)BV022447306 |
work_keys_str_mv | AT meyerspascherita patternformationinviscousflowsthetaylorcouetteproblemandrayleighbenardconvection |